Adib A, Georgian AZ (2016) Drought monitoring and monitoring using drought indices. Iran Irrigation Water Eng 8:173–185 [In Persian]
Google Scholar
Ahmadzadeh G, Majid L, Kourosh M (2010) Comparison of artificial intelligence systems (ANN and ANFIS) in estimating the rate of transpiration of reference plants in very dry regions of Iran. J Water Soil 2:679–689 [In Persian]
Google Scholar
Alirreza N, Pål G, Helen K, Anders L, Per L (2019) Use of TEOM monitors for continuous long-term sampling of ambient particles for analysis of constituents and biological effects. Air Qual Atmosphere Health 12:161–171. https://doi.org/10.1007/s11869-018-0638-5
CAS
Article
Google Scholar
Alizadeh S, Mohammadi H, Kordvani P (2017) Modeling the dispersion of drought caused by climate change in Iran using dynamic system. Land Expansion 9:169–188 [In Persian]
Google Scholar
Ansari H, Davari K, Sanaeenejad SH (2010) Drought monitoring using SEPI standardized rainfall and sedimentation index, developed on the basis of fuzzy logic. Journal of Soil and Water (Agricultural Sciences and Technology) 1:38–52
Google Scholar
Armando L, Santos MS (2015) Use of two indicators for the socio-environmental risk analysis of northern Mexico under three climate change scenarios. Air Qual Atmos Health 8:331–345. https://doi.org/10.1007/s11869-014-0286-3
Article
Google Scholar
Bandyopadhyay N, Bhuiyan C, Saha AK (2019) Drought mitigation: critical analysis and proposal for a new drought policy with special reference to Gujarat (India). Progress Disaster Sci 22:10–49. https://doi.org/10.1016/j.pdisas.2019.100049
Article
Google Scholar
Bayazidi M (2018) Drought evaluation of synoptic stations in the west of Iran using the Herbst method and comparative neuro-fuzzy model. Iran Water Resources Research 14:278–284 [In Persian]
Google Scholar
Cammalleri C, Micale F, Vogt J (2015) On the value of combining different modelled soil moisture products for European drought monitoring. J Hydrol 525:547–558. https://doi.org/10.1016/j.jhydrol.2015.04.021
Article
Google Scholar
Damavandi AA, Rahimi M, Yazdani MR, Norouzi AA (2016) Field monitoring of agricultural drought through time series of NDVI and LST indicators. MODIS data (case study: Markazi province). Geographic Inf Res (Sepehr) 25:115–126 [In Persian]
Google Scholar
Ekhtiari khajeh S, Dinpazhoh Y (2018) Application of the Effective Drought Index (EDI) for studying dry periods (Tabriz, Bandar Anzali and Zahedan stations). Irrigation Sci Engi 1:133–145
Google Scholar
Fanni Z, Khalilalahi HA, Sajjadi J, Falsleman M (2016) Analysis of the causes and consequences of drought in South Khorasan Province and Birjand. J Plann Space Des 20:175–200 [In Persian]
Google Scholar
Fathi-Zadeh H, Gholami-nia A, Mobin M, Soodyzizadeh H (2017) Investigating the relationship between meteorological drought and solar variables in some Iranian standards. Environ Hazards 17:63–87 [In Persian]
Google Scholar
Gholam Ali M, Younes K, Esmaeil H, Fatemeh T (2011) Assessment of geostatistical methods for spatial analysis of SPI and EDI drought indices. World Appl Sci J 15:474–482
Google Scholar
Haddadi H, Heidari H (2015) Detection of the effect of precipitation fluctuations on surface water flood in Lake Urmia catchment basin. Geogr Environ Plann 57:247–262 [In Persian]
Google Scholar
Hao Z, Hao F, Singh V, Xia Y, Xinyishen O (2016) A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Adv Water Resour 14:240–247
Google Scholar
Harry W, Nevil Q, Michael H (2019) Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens Environ 232:111–291. https://doi.org/10.1016/j.rse.2019.111291
Article
Google Scholar
Huanga S, Huanga Q, Changa J, Zhua Y, Lengb G (2016) Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin China. J Hydrol 530:127–136
Google Scholar
Huiqian Y, Qiang Z, Chong-Yu X, Juan D, Peng S, Pan H (2019) Modified palmer drought severity index: model improvement and application. Environ Int 130:104–951. https://doi.org/10.1016/j.envint.2019.104951
Article
Google Scholar
Jafar Nejad A, Kia S.M (2010) Fuzzy Logic in MATLAB. Kian Rayaneh Sabz publication 4: 157–180
Jafari H, Bakhtiari F, Dostkamian M (2018) Analysis of the spatial association of droughts with the watershed water flow of Ghezel Ozan basin. Geography and Development 15:79–94
Google Scholar
Jan Darmian I, Shakiba A, Nasseri H (2015) Study of drought status and its relationship with quantitative and qualitative changes in groundwater in Sarab plain, international conference on development, focusing on agriculture. Environment and Tourism, Iran, Tabriz 7:16–17 [In Persian]
Google Scholar
Jinum M, Jeonbin K (2017) Evaluatin historical drought charactristics simulated in Cordexast Asia against observations. Int J Climatol 25:32–43
Google Scholar
Jonilda K, Georgios G, Yiannis P, Theodoros C, Philippe T, Chrysanthos S, Christos P, Jos L (2019) Evaluation of EU air quality standards through modeling and the FAIRMODE benchmarking methodology. Air Quality, Atmosphere & Health 12:73–86. https://doi.org/10.1007/s11869-018-0631-z
CAS
Article
Google Scholar
Junfang Z, Jingwen X, Xingmei X, Houquan L (2016) Drought monitoring based on TIGGE and distributed hydrological model in Huaihe River Basin, China. Sci Total Environ 553:358–365. https://doi.org/10.1016/j.scitotenv.2016.02.115
CAS
Article
Google Scholar
Keshtkarisani S (2015) Drought study in West Azarbaijan province with Spi and Gis Index, International Conference on Agricultural. Environment and Tourism, Iran, Tabriz 4:16–19
Google Scholar
Kinga W, Anita UL, Marta S (2019) Air quality at two stations (Gdynia and Rumia) located in the region of gulf of Gdansk during periods of intensive smog in Poland. Air Quality, Atmosphere & Health 12:879–890. https://doi.org/10.1007/s11869-019-00708-6
CAS
Article
Google Scholar
Kis A, Rita P, Judit B (2017) Multi- model analysis of regional dry and wet condition for the Carpatian region. Int J Climatol 17:4543–4560
Google Scholar
Konarkuhi A, SoleimanJahi H, Falahi S, Riahimadvar H, Meshkat Z (2010) Using the new intelligent fuzzy-neural recognition inventory system (ANFIS) to predict the human cannibalization potential of human papilloma virus. Journal of Arak University of Science and Technology 13:95–105 [In Persian]
Google Scholar
Liu M, Xianli X, Sun Y, Lexander A, Kelin W (2017) Decreasing spatial variability of drought in south West China during 1959-2013. Int J Climatol 21:4610–4619
Google Scholar
Makvandi R, Maghsoudlo-Kamali B, Mohammadfam I (2012) Utilization of TOPSIS multivariate decision making model for assessing the environmental consequences of oil refineries (case study: Khuzestan extra heavy oil refinery). Environ Stud 3:77–86 [In Persian]
Google Scholar
Martha A, Carmelo C, Christopher H, Jason O, Xiwu Z, William K (2013) Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales. Procedia Environ Sci 19:47–56. https://doi.org/10.1016/j.proenv.2013.06.006
Article
Google Scholar
Mirzaee F, IraqiNezhad S, Big-Haddad A (2015) Development of WEAP integrated water model model for drought condition modeling. J Eng Watershed Manag 7:85–97 [In Persian]
Google Scholar
Modaresirad A, Ghahramani B, Khalili D, Ghahramani Z, Ahmadiardakani S (2017) Integrated meteorological and hydrological drought model: a management tool for proactive water resources planning of semi-arid regions. Adv Water Resour 54:336–353
Google Scholar
Montaseri M, Amirataee B (2015) Stochastic estimation of drought prevalence (case study: northwest of Iran). Journal of Civil and Environmental Engineering 3:12–26 [In Persian]
Google Scholar
Montaseri M, Norjo A, Bahmanesh J, Akbari M (2018) Wet season and meteorological drought in southern basins of Lake Urmia. Ecoehydrology 1:189–202
Google Scholar
Moradi H, Tayyi M, Ghasemian D, Chesghi J, Bahari R (2008) Simulation and analysis of the relationship between water and climate droughts using probabilistic models of Babol plain. Iran Watershed Association 2(5):71–74 [In Persian]
Google Scholar
Mulchsfaki Y (2006) Geographic information system and multi-criteria decision analysis, translated by Akbar Parizgar. Ata Ghafari flooded. Tehran. Publishing Side 4:551–563 [In Persian]
Google Scholar
Nazmfar H, Amina A (2014) Measurement of spatial inequality in using educational indices using Topsis method (case study: Khorestan Province). Two Chapters of Educational Planning Studies 3:115–134 [In Persian]
Google Scholar
Nourani V, Amir M (2017) Application of a hybrid association rules/decision tree model for drought monitoring. Glob Planet Chang 159:37–45. https://doi.org/10.1016/j.gloplacha.2017.10.008
Article
Google Scholar
Olusola A, Jiahua W (2019) Appraising regional multi-category and multi-scalar drought monitoring using standardized moisture anomaly index (SZI): a water-energy balance approach. J Hydrol 579:124–139. https://doi.org/10.1016/j.jhydrol.2019.124139
Article
Google Scholar
Parsa-Mehr AH, Khosravani Z (2017) Determination of drought determination using multi-criteria decision making based on TOPSIS. Research on Pasture and Desert of Iran 24:16–29
Google Scholar
Perovi R, Alidadi H, Javid A, Najafpour AS (2015) Modeling the effect of drought on total hardness and solids of groundwater in Mashhad plain. J Environ Health Res 1:85–94 [In Persian]
Google Scholar
Qamasi M, MalekMohammadi M, Montaseri H (2016) Drought prediction with SPI and EDI index using ANFIS modeling method in Kohgiluyeh and Boyerahmad province. Agricultural Meteorology Journal 1:36–47
Google Scholar
Quesada B, Giuliano M, Asarre D, Rangecoft S, Vanloon A (2017) Hydrological change: toward a consistent approach to assess changes on both floods and droughts. Adv Water Resour 5:31–35
Google Scholar
Runping S, Anqi H, BolunLi JG (2019) Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int J Appl Earth Obs Geoinf 79:48–57. https://doi.org/10.1016/j.jag.2019.03.006
Article
Google Scholar
Salahi B, Mojtabapour F (2016) Spatial analysis of climate drought in northwest of Iran using spatial correlations statistics. Journal of Environmental Spatial Spatial Analysis 3:1–20 [In Persian]
Google Scholar
Salajeghe A, Fathabadi A (2009) Investigating the possibility of estimating the suspended load of Karaj River using fuzzy logic and neural network. Journal of Rangeland and Watershed Management (Iranian Journal of Natural Resources) 2:271–282
Google Scholar
Samidianfard S, Asadi I (2018) Projection of SPI drought index by multiple regression and supportive vector regression methods. Water and Soil Conservation 6:1–16
Google Scholar
Shamsniya A, Pirmoradian N, Amiri N (2008) Drought modeling in Fars Province using time series analysis. Geography and Planning 28:165–189
Google Scholar
Shokri-kouchak S, Behnia AS (2013) Monitoring and drought stress in Khuzestan province using Markov chain SPI index. Journal of Science and Environmental Sciences 5:41–52 [In Persian]
Google Scholar
Sobhani B, Safarianzengir V (2018) Investigating and predicting the risk of monthly rainfed exposure to horticultural and agricultural products in the northern strip of Iran (Golestan, Gilan and Mazandaran provinces). J environ spat anal 5:125–144[in Persian]
Sobhani B, GhafariGilandeh A, Golvost A (2015) Drought monitoring in Ardebil province using the developed SEPI index based on fuzzy logic. Journal of Applied Geosciences Research 15:51–72 [In Persian]
Google Scholar
Spinoni J, Naumann G, Vogt J, Barbosa P (2015) The biggest drought events in Europe from 1950–2012. journal of hydrology: Regional 3:509–524
Google Scholar
Torabipodeh H, Shahinejad B, Dehghani R (2018) Drought estimation using smart networks. Hydrogeomorphology. 14:179–197
Google Scholar
Touma D, Ashfaq M, Nayak M, Kao S-C, Diffenbaugh N (2015) A multi-model and multi-index evaluation of drought characteristics in the 21st century. J Hydrol 526:196–207
Google Scholar
Wenzhe J, Chao T, Qing C, Kimberly N, Lixin W (2019a) A new multi-sensor integrated index for drought monitoring. Agric For Meteorol 268:74–85. https://doi.org/10.1016/j.agrformet.2019.01.008
Article
Google Scholar
Wenzhe J, Lixin W, Kimberly N, Qing C (2019b) A new station-enabled multi-sensor integrated index for drought monitoring. J Hydrol 574:169–180. https://doi.org/10.1016/j.jhydrol.2019.04.037
Article
Google Scholar
Xiao L, Ping G, Qian T, Jingfeng X, Yifan L, Yikuan T (2019) Drought risk evaluation model with interval number ranking and its application. Science of The Total Environmen 685:1042–1057. https://doi.org/10.1016/j.scitotenv.2019.06.260
CAS
Article
Google Scholar
Yarahmadi D (2014) Hydroclimatic analysis of water level fluctuations in Lake Urmia. Journal of Natural Geography 46:77–92
Google Scholar
Yunjun Y, Shunlin L, Qiming Q, Kaicun W, Shaohua Z (2011) Monitoring global land surface drought based on a hybrid evapotranspiration model. Int J Appl Earth Obs Geoinf 13:447–457. https://doi.org/10.1016/j.jag.2010.09.009
Article
Google Scholar
Zahiri AS, Sharifan H, Arakashi F, Rahimian M (2014) Evaluation of drought and drought phenomena in Khorasan province using indices of PNPI, SPI, NITZCHE. Irrigation and drainage journal of Iran 2:865–845 [In Persian]
Google Scholar
Zeinali B, SafarianZengir V (2017) Drought monitoring in Urmia Lake Basin using fuzzy index. Journal of environmental risks 6: 37-62. [in Persian]. https://doi.org/10.22111/jneh.2017.3075
Zeinali B, Asghari S, SafarianZengir V (2017) Drought monitoring and assessment of its prediction in Lake Urmia Basin using SEPT and ANFIS model. Environmental Impact Analysis Spatial Analysis Journal 4:73–96 [In Persian] http://jsaeh.khu.ac.ir/article-1-2695-fa.html
Google Scholar
Zelekei T, Giorgi T, Diro F, Zaitchik B (2017) Trend and periodicity of drought over Ethiopia. Int J Climatol 65:4733–4748
Google Scholar
Zengchao H, Fanghua H, Vijay S, Wei O, Hongguang C (2017) An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environ Model Softw 91:199–209. https://doi.org/10.1016/j.envsoft.2017.02.008
Article
Google Scholar
Zexi S, Qiang Z, Vijay S, Peng S, Changqing S, Huiqian Y (2019) Agricultural drought monitoring across Inner Mongolia, China: model development, spatiotemporal patterns and impacts. J Hydrol 571:793–804. https://doi.org/10.1016/j.jhydrol.2019.02.028
Article
Google Scholar
Zolfaghari H, Nouri Z (2016) Application of drought index (CPEL) in determining proper variables for drought analysis in Iran. Journal of Spatial Analysis of Environmental Hazards 3:99–114 [In Persian]
Google Scholar