Skip to main content

Advertisement

Log in

Optical aerosol properties of megacities: inland and coastal cities comparison

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Measurements of aerosol optical depths allow the determination of microphysical and radiative characteristics of atmospheric aerosols and specially that of Megacities, which contribute to the deterioration of air quality live, increase health effects, and anthropogenic climate change. This paper analyzes the aerosol optical properties of ten megacities classified on inland and costal sites. The annual average of aerosol optical depths are around 0.5 and peaks can exceed 4 especially in summer for East Asia (Beijing and Bangkok) where the involvement of the anthropogenic aerosol is more important. Single scattering albedo is often greater than 0.8 and sometimes show wide variations between 0.6 and 0.98. The refractive index is constant and stands at 1.47 for the real part and 16 10−3 for its imaginary part. The PSDs are 0.16 μm for the fine mode and 2.3 μm for the coarse particle mode with a 3 μm magnification trend for the coastal sites. The volume concentrations are on average close to 0.1 μm3/μm2 for large particles and 0.04 μm3/μm2 for fines with peaks observed at Ilorin for large and at Beijing for fines. Radiative forcing are always negative (cooling trends), relatively low at the top of the atmosphere, larger at surface, and relatively higher at coastal sites. For the vertical atmospheric column, anthropogenic radiative forcing is always positive (warming trends) estimated average of + 14 W/m2 and natural registers three times increase for coastal sites. In reality, the coastal distinction is not at the origin of this increase since the maxima recorded are also included in the inland sites (Riyadh and Ilorin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asmi A (2012) Natural and anthropogenic influences on tropospheric aerosol variability Division of Atmospheric Sciences Department of Physics Faculty of Science University of Helsinki, Finland

  • Cooke WF, Wilson JJN (1996) A global black carbon aerosol model. JGR Atmospheres 101(14, August 1996):19395–19409. https://doi.org/10.1029/96JD00671

    Article  CAS  Google Scholar 

  • Che H, Xia X, Zhu J, Wang H, Wang Y, Sun J, Zhang X, Shi G (2015) Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ Sci Pollut Res 22:1043–1053. https://doi.org/10.1007/s11356-014-3415-5

    Article  CAS  Google Scholar 

  • Diouri M (2018) Atmosphère et climat … vers l’adaptation intelligente Volume I. Mohammed First University, Oujda, Morocco

    Google Scholar 

  • Diouri M, Elhitmy M, Sanda IS, Jaenicke R, Kulzer S, Leiterer U, Schütz L, Schultz KH (1997) Indirect determination of particle size distribution using a sun photometer at Lidenberg (Germany) and Oujda (Morocco). J Aerosol Sci:S401–S402. https://doi.org/10.1016/S0021-8502(97)85200-7

    Article  CAS  Google Scholar 

  • Diouri M, Sanda SI (1997) Deduction of particle size distribution from aerosol optical depth. CLEOPATRE-I code. J Aerosol Sci 28:S459

    Article  CAS  Google Scholar 

  • Dinter T., von Hoyningen-Huene W., Burrows J.P., Kokhanovsky A., Bierwirth E., Wendisch M., Müller D., Kahn R. and Diouri M.. Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM ca. J. Tellus, 61B, 7-238, 2009

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessment of aerosol optical properties retrieval from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res:9791–9806. https://doi.org/10.1029/2000JD900040

    Article  CAS  Google Scholar 

  • El Amraoui L, Diouri M, El Hitmy M, Jaenicke R, Schütz L, von Hoyningen-Huene W (2000) Aerosol optical parameters over North Eastern Morocco. J Aerosol Sci 31(0):277–278. https://doi.org/10.1016/s0021-8502(00)90287-8

    Article  Google Scholar 

  • El Aouadi I. and Diouri M.. Aerosol radiative forcing at the surface in N.E. of Morocco. European Aerosol Conference EAC, 2005.

  • Ban-Weiss GA, Lunden MM, Kirchstetter TW, Harley RA (2010) Size-resolved particle number and volume emission factors for on-road gasoline and diesel motor vehicles. J Aerosol Sci 41:512

    Article  Google Scholar 

  • Gharibzadeha M, Alam K, Abedinia Y, Bidokhtic AA, Masoumia A, Bibib H, Zeb B (2019) Journal of Atmospheric and Solar-Terrestrial Physics. Climatological analysis of the optical properties of aerosols and their direct radiative forcing in the Middle East 183:86–98. https://doi.org/10.1016/j.jastp.2019.01.002

    Article  CAS  Google Scholar 

  • Global energy data at your fingertips. International Energy Agency (IEA). http://www.iea.org

  • Holben BN, Slutsker TFEI (1998) AERONET a federated instrument network and data archive for aerosol characterization. Remote Sens Environ:1–16. https://doi.org/10.1016/S0034-4257(98)00031-5

    Article  Google Scholar 

  • IPPC (2014) Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Saikia J, Roy S, Bordoloi M, Saikia P, Saikia BK (2018) Atmospheric aerosols around three different types of coal-based industries: emission parameters, cytotoxicity assay, and principal component analysis. J Aerosol Sci 126:21–32

    Article  CAS  Google Scholar 

  • Kim SG, Yoon S (2019) Measuring the value of airborne particulate matter reduction in Seoul. Air Qual Atmos Health 12:549–560. https://doi.org/10.1007/s11869-019-00668-x

    Article  CAS  Google Scholar 

  • Kim H-S, Chung Y-S, Yoon M-B (2015) An analysis on the impact of large-scale transports of dust pollution on air quality in East Asia as observed in central Korea in 2014. Air Qual Atmos Health 9(1):83–93. https://doi.org/10.1007/s11869-014-0312-5

    Article  CAS  Google Scholar 

  • Iqbal M (1983) An Introduction to solar Radiation. Academic Press, Toronto

    Google Scholar 

  • Marsli I, Diouri M, Steli H, El Khabbouti A (2019) Optical characterization of cloud and aerosol of the temperate zone Air Quality. Atmosphere & Health. https://doi.org/10.1007/s11869-019-00716-6

    Article  CAS  Google Scholar 

  • Mehta S, Shin H, Burnett R, North T, Cohen AJ (2013) Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 6(1):69–83. https://doi.org/10.1007/s11869-011-0146-3

    Article  CAS  Google Scholar 

  • Meziane R, Diouri M, Ben-Tayeb A (2014a) Aerosol radiative forcing determined for large urban areas, International Aerosol Conference, 2014. Bexco, Busan, Korea

    Google Scholar 

  • Meziane R, Diouri M, Tanre D, Blarel L (2015) Comparaison des distributions globales des particules d’aérosol entre Lille et Oujda pour 2013. Congrès des aérosols, Paris, Jan

    Google Scholar 

  • O’Neill MS, Breton CV, Devlin RB, Utell MJ (2011) Air pollution and health: emerging information on susceptible populations. Air Qual Atmos Health 5(2):189–201. https://doi.org/10.1007/s11869-011-0150-7

    Article  Google Scholar 

  • Meziane R, Diouri M, Steli H (2014b) Global aerosol PSD of urban areas. In: International Aerosol Conference, 2014. Korea, Bexco, Busan

    Google Scholar 

  • Meziane R, Diouri M, Marsli I (2014c) Aerosol optical thickness observed on the world’s top five cities. International Aerosol Conference, Bexco, Busan, Korea

  • Nosko O., Olofsson ULF. Effective density of airborne wear particles from car brake materials, J Aerosol Sci, Volume 107, May 2017, 94-106. https://doi.org/10.1016/j.jaerosci.2017.02.014

    Article  CAS  Google Scholar 

  • Park EH, Heo J, Hirakura S et al (2018) Characteristics of PM2.5 and its chemical constituents in Beijing, Seoul, and Nagasaki. Air Qual Atmos Health 11:1167. https://doi.org/10.1007/s11869-018-0616-y

    Article  CAS  Google Scholar 

  • Yu Q-R, Zhang F, Li J, Zhang J (2019) Analysis of sea-salt aerosol size distributions in radiative transfer. J Aer Sc 129:71–86. https://doi.org/10.1016/j.jaerosci.2018.11.014

    Article  CAS  Google Scholar 

  • Ramanathan V. and et al (2008). ABC regional assessment report with focus on Asia, UNEP

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley and Sons, Inc, New York

    Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349

    Article  Google Scholar 

  • Solomon et al. 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC

  • Steli H, Diouri M, Marsli I, Meziane R (2017) Aerosol PSD and occurrence frequencies of clouds in the equatorial area. JMES 8(2):648–656

    CAS  Google Scholar 

  • Tahiri A, Diouri M (2015) Aerosol radiative forcing of desert regions. Environ Sci 3(1):17–29. https://doi.org/10.12988/es.2015.4118

    Article  Google Scholar 

  • Tahiri A, Diouri M, Steli H, Marsli I, Meziane R, Ben-tayeb A (2016) Desert aerosol optical properties in Morocco. Environ Sci Hikari Ltd 4:63–78. https://doi.org/10.12988/es.2016.631

    Article  Google Scholar 

  • Tang G, Zhu X, Hu B, Xin J, Wang L, Münkel C, Mao G, Wang Y (2015) Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations. Atmos Chem Phys 15:12667–12680. https://doi.org/10.5194/acp-15-12667

    Article  CAS  Google Scholar 

  • Twomey S (1979) Atmospheric Aerosol. Elsevier Scientific Publishing Company

  • Zhang Y. and Rossow W.B.. ISCCP 25th Anniversary Symposium, NASA GISS, NYC

Download references

Acknowledgments

The authors would like to thank all PI of the AERONET studied sites: Juan Ramon Moreta Gonzalez (Madrid), Francois Ravetta (Paris), Brent Holben (Moscow and Riyadh), Zhengqiang Li (Beijing), Stephane Alfaro and Magdy Abdel Wahab (Cairo), SermJanjai (Bangkok), Sang-Woo Kim (Seoul), Enio B. Pereira (Brasilia), Rachel T. Pinker (Ilorin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajae Meziane.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meziane, R., Diouri, M. & Ben-tayeb, A. Optical aerosol properties of megacities: inland and coastal cities comparison. Air Qual Atmos Health 13, 25–33 (2020). https://doi.org/10.1007/s11869-019-00769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-019-00769-7

Keywords

Navigation