Skip to main content
Log in

Comparison of spatial patterns of ammonia concentration and dry deposition flux between a regional Eulerian chemistry-transport model and a local Gaussian plume model

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Agricultural activities are the principal sources of ammonia (NH3) emitted into the atmosphere. High ammonia deposition flux may impact sensitive ecosystems. Regional models of NH3 dispersion, transport and deposition may under- or overestimate NH3 fluxes. We compared NH3 dry deposition fluxes simulated with local and regional models on different theoretical scenarios characterised by varying the values of several input factors: grid cell sizes, characteristics of the NH3 sources such as location and emission rate, characteristics such as canopy resistance (Rc) or roughness length (z0) at the NH3 sinks, and meteorological conditions such as wind speed and direction. Our results showed that, for a given grid cell size, both models provide similar predictions of average NH3 concentration and dry deposition flux over the whole simulation domain. A sensitivity analysis of NH3 concentration and dry deposition flux to wind speed and to surface resistance also showed a similar behaviour between both models. However, the differences of model formalism and changes in the values of the input factors, especially grid cell size and vertical resolution, provide different spatial patterns of NH3 dry deposition flux and concentration. Our results would suggest that regional models operating with large grid cell sizes (e.g. larger than 1 km) could not predict accurately patterns of NH3 dry deposition fluxes close to the sources (e.g. a few tens or hundreds of metres) on heterogeneous landscapes in terms of NH3 fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asman WAH, van Jaarsveld HA (1992) A variable-resolution transport model applied for NHx in Europe. Atmos Environ 26:445–464

    Article  Google Scholar 

  • Asman WAH, Pinksterboer EF, Maas HFM, Erisman JW, Waijersypelaan A, Slanina J, Horst TW (1989) Gradients of the ammonia concentration in a nature reserve: model results and measurements. Atmos Environ 23:2259–2265

    Article  CAS  Google Scholar 

  • Asman WAH, Sutton MA, Schjørring JK (1998) Ammonia: emission, atmospheric transport and deposition. New Phytol 139:27–48

    Article  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  Google Scholar 

  • De Pue D, Roet D, Lefebvre W, Buysse J (2017) Mapping impact indicators to link airborne ammonia emissions with nitrogen deposition in Natura 2000 sites. Atmos Environ 166:120–129

    Article  CAS  Google Scholar 

  • Dore AJ, Carslaw DC, Braban C, Cain M, Chemel C, Conolly C, Derwent RG, Griffiths SJ, Hall J, Hayman G, Lawrence S, Metcalfe SE, Redington A, Simpson D, Sutton MA, Sutton P, Tang YS, Vieno M, Werner M, Whyatt JD (2015) Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and Sulphur deposition estimates for the UK. Atmos Environ 119:131–143

    Article  CAS  Google Scholar 

  • Dragosits U, Theobald MR, Place CJ, Lord E, Webb J, Hill J, ApSimon HM, Sutton MA (2002) Ammonia emission, deposition and impact assessment at the field scale: a case study of sub-grid spatial variability. Environ Pollut 117:147–158

    Article  CAS  Google Scholar 

  • Erisman JW, Vermetten AWM, Pinksterboer EF, Asman WAH, Waijers-Ypelaan A, Slanina J (1987) Atmospheric ammonia: distribution, equilibrium with aerosols and conversion rate to ammonium. In: Ammonia and acidification. RIVM/TNO, Bilthoven, pp 59–72

    Google Scholar 

  • Geels C, Andersen HV, Ambelas Skjøth C, Christensen JH, Ellermann T, Løfstrøm P, Gyldenkærne S, Brandt J, Hansen KM, Frohn LM, Hertel O (2012) Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS. Biogeosciences 9:2625–2647

    Article  CAS  Google Scholar 

  • Jones L, Nizam MS, Reynolds B, Bareham S, Oxley ERB (2013) Upwind impacts of ammonia from an intensive poultry unit. Environ Pollut 180:221–228

    Article  CAS  Google Scholar 

  • Loubet B, Milford C, Sutton MA, Cellier P (2001) Investigation of the interaction between sources and sinks of atmospheric ammonia in an upland landscape using a simplified dispersion-exchange model. J Geophys Res Atmos 106:24183–24195

    Article  CAS  Google Scholar 

  • Loubet B, Asman WAH, Theobald MR, Hertel O, Tang YS, Robin P, Hassouna M, Daemmgen U, Génermont S, Cellier P, Sutton MA (2009) Ammonia deposition near hot spots: processes, models and monitoring methods. In: Atmos Ammonia. Springer, Dordrecht, pp 205–267

    Chapter  Google Scholar 

  • McGinn SM, Janzen HH, Coates TW, Beauchemin KA, Flesch TK (2016) Ammonia emission from a beef cattle feedlot and its local dry deposition and re-emission. J Environ Qual 45:1178–1185

    Article  CAS  Google Scholar 

  • Menut L, Bessagnet B, Khvorostyanov D, Beekmann M, Blond N, Colette A, Coll I, Curci G, Foret G, Hodzic A, Mailler S, Meleux F, Monge JL, Pison I, Siour G, Turquety S, Valari M, Vautard R, Vivanco MG (2013) CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci Model Dev 6:981–1028

    Article  CAS  Google Scholar 

  • Peduzzi E, Pisoni E, Clappier A, Thunis P (2018) Multi-level policies for air quality: implications of national and sub-national emission reductions on population exposure. Air Qual Atmos Health 11:1121–1135

    Article  CAS  Google Scholar 

  • Pitcairn CE, Leith ID, van Dijk N, Sheppard LJ, Sutton MA, Fowler D (2009) The application of transects to assess the effects of ammonia on woodland groundflora. In: Atmos Ammonia. Springer, Dordrecht, pp 59–69

    Chapter  Google Scholar 

  • Sauter F, van Jaarsveld JA, Van Zanten M, van der Swaluw E, Aben J, de Leeuw F (2015) The OPS-model. Description of OPS 4.4.4. RIVM Report. National Institute for Public Health and the Environment (RIVM), Bilthoven

    Google Scholar 

  • Shen J, Chen D, Bai M, Sun J, Coates T, Lam SK, Li Y (2016) Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Sci Rep 6:32793

    Article  CAS  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2007) A description of the advanced research WRF version 2. NCAR Technical Note, Boulder

    Google Scholar 

  • Sutton MA, Milford C, Dragosits U, Place CJ, Singles RJ, Smith RI, Pitcairn CER, Fowler D, Hill J, ApSimon HM, Ross C, Hill R, Jarvis SC, Pain BF, Phillips VC, Harrison R, Moss D, Webb J, Espenhahn SE, Lee DS, Hornung M, Ullyett J, Bull KR, Emmett BA, Lowe J, Wyers GP (1998) Dispersion, deposition and impacts of atmospheric ammonia: quantifying local budgets and spatial variability. Environ Pollut 102:349–361

    Article  CAS  Google Scholar 

  • Theobald MR, Løfstrøm P, Walker J, Andersen HV, Pedersen P, Vallejo A, Sutton MA (2012) An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions. Environ Model Softw 37:90–102

    Article  Google Scholar 

  • Theobald MR, Simpson D, Vieno M (2016) Improving the spatial resolution of air-quality modelling at a European scale - development and evaluation of the air quality re-gridder model (AQR v1.1). Geosci Model Dev 9:4475–4489

    Article  Google Scholar 

  • Thunis P, Degraeuwe B, Pisoni E, Meleux F (2017) Analyzing the efficiency of short-term air quality plans in European cities, using the CHIMERE air quality model. Air Qual Atmos Health 10:235–248

    Article  CAS  Google Scholar 

  • Valari M, Menut L (2010) Transferring the heterogeneity of surface emissions to variability in pollutant concentrations over urban areas through a chemistry transport model. Atmos Environ 44:3229–3238

    Article  CAS  Google Scholar 

  • van der Swaluw E, de Vries W, Sauter F, Aben J, Velders G, van Pul A (2017) High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling. Atmos Environ 155:140–153

    Article  CAS  Google Scholar 

  • van Jaarsveld JA (2004) The operational priority substances model. Description and validation of OPS-Pro 4.1. RIVM-report 500045001. RIVM, Bilthoven

    Google Scholar 

  • van Pul WAJ, van Jaarsveld JA, Vellinga OS, van den Broek M, Smits MCJ (2008) The VELD experiment: an evaluation of the ammonia emissions and concentrations in an agricultural area. Atmos Environ 42:8086–8095

    Article  CAS  Google Scholar 

  • Vivanco MG, Bessagnet B, Cuvelier C, Theobald MR, Tsyro S, Pirovano G, Aulinger A, Bieser J, Calori G, Ciarelli G, Manders A, Mircea M, Aksoyoglu S, Briganti G, Cappelletti A, Colette A, Couvidat F, D'Insidoro M, Kranenburg R, Meleux F, Menut L, Pay MT, Rouïl L, Silibello C, Thunis P, Ung A (2017) Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project. Atmos Environ 151:152–175

    Article  CAS  Google Scholar 

  • Wichink Kruit RJ, Aben J, de Vries W, Sauter F, van der Swaluw E, van Zanten MC, van Pul WAJ (2017) Modelling trends in ammonia in the Netherlands over the 1990-2014. Atmos Environ 154:20–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge L. Menut, C. Flechard and N. Flipo for useful comments on the design of the research and on results. We also thank F.J. Sauter, O. Maury and M.R. Theobald for their help in programming support, model coding and data formatting.

Funding

This work was supported by the French National Institute for Agricultural Research (Environment and Agronomy Division), the EU ECLAIRE project (grant no. FP7-Environment 282910), and the French Research Agency (ANR), ESCAPADE project (ANR-12-AGRO-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Drouet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azouz, N., Drouet, JL., Beekmann, M. et al. Comparison of spatial patterns of ammonia concentration and dry deposition flux between a regional Eulerian chemistry-transport model and a local Gaussian plume model. Air Qual Atmos Health 12, 719–729 (2019). https://doi.org/10.1007/s11869-019-00691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-019-00691-y

Keywords

Navigation