Analysis of fungal contamination in vehicle air filters and their impact as a bioaccumulator on indoor air quality

Abstract

Studies on air quality within automotive vehicles are an emerging research area in Brazil, especially in the city of São Paulo, one of the most polluted cities in the world and with the largest fleet of vehicles in the country. Indoor air quality is an indicator of environmental health that takes into account, in addition to thermal comfort, factors that interfere in precarious air conditions, such as the presence of fungi, bacteria and carbon dioxide in indoor air-conditioned environments. The objective of the present study was to analyse the fungal contamination in air-conditioning filters collected from 21 automotive vehicles and the study found 17 fungal genera in all samples collected (100%), including toxigenic fungi such as Penicillium, Fusarim and Aspergillus, indicating that indoor air quality can compromise the health of a portion of the population, such as professional drivers. Among the Aspergillus genus, the results showed the presence of the A. flavus, A. niger, A. fumigatus, A. ochraceus and A. clavatus species, which cause severe allergic and pulmonary respiratory diseases. Air in artificially heated environments should provide comfort to its occupants but it may pose a risk to human health if the car filtration system is contaminated by pathogenic fungi.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alarcón G, Conti DM, Díaz FP, García LAG, López FM, Vergara A (2017) Mobility in Latin American metropolis: case studies from Bogotá, Buenos Aires, Lima, Mexico and São Paulo-liberal proposals, 1st. edn. Fundación Friedrich Naumann Foundation por La Libertad, Mexico City

  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4rd edn. John Wiley and Sons, USA

    Google Scholar 

  3. Andrade DFR, Sousa MAS, Silva HMG, Carvalho VM, Sousa MAS, Nunes MRCM, Freitas DRJ (2015) Fungal microbiota in air in intensive care units and surgical centres. REPIS 1(1):74–81

    Google Scholar 

  4. Andrade MF, Kumar P, Freitas ED et al (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82

    CAS  Article  Google Scholar 

  5. ARPEM Association(2017) Aspergillosis in humans. Dynamics of colonisation and infection by Aspergillus fumigatus in the respiratory tract of humans and animals. http://dynamyc.fr/en-2-aspergillus-fumigatus-aspergillosis.html. Accessed 26 July 2018

  6. Asadi E, Costa JJ, Silva MG (2011) Indoor air quality audit implementation in a hotel building in Portugal. Build Environ 46(8):1617–1623

    Article  Google Scholar 

  7. Aydogdu H, Asan A, Otkun MT (2010) Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ Monit Assess 164(1–4):53–66

    Article  Google Scholar 

  8. Beever RE, Bollard EG (1970) The nature of the stimulation of fungal growth by potato extract. J Gen Microbiol 60:273–279

    Article  Google Scholar 

  9. Berjak P (1984) Report of seed storage group working group on the effects of storage fungi on seed viability. Seed Sci Technol 12(1):233–253

    Google Scholar 

  10. Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Kubiesa P, Fulara I, Mielżyńska-Švach D (2017) Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland. Air Qual Atmos Health 10(10):1207–1220

    Article  Google Scholar 

  11. Brackmann A, Saquet AA, Veiga VV, Bortoluz L (1996) Effect of CO2 and O2 concentrations on growth and sporulation of Penicillium expansum (link) Thom, in vitro. Rev Bras Agro 2(3):147–150

    Google Scholar 

  12. Burge HA, Levetin E, Muilenberg ML, Solomon WR (1997) Fungus spore identification. Am Acad Aller Asth Immunol, San Francisco

    Google Scholar 

  13. Cartaxo EF, Gonçalves ACLC, Costa FR, Coelho IMV, Santos JG (2007) Aspects of biological contamination in air conditioner filters installed in homes in the city of Manaus, AM. Eng Sanit Ambient 12(2):202–211

    Article  Google Scholar 

  14. Caumo S, Vicente A, Custódio D, Alves C, Vasconcellos P (2018) Organic compounds in particulate and gaseous phase collected in the neighbourhood of an industrial complex in São Paulo (Brazil). Air Qual Atmos Health 11(3):271–283

    CAS  Article  Google Scholar 

  15. Cerqueira PES, Guimarães ABF (2017) Indoor air quality in a petrochemical industry. Cientefico 17(35):1–18

    Google Scholar 

  16. Gniadek A (2012) Cytotoxicity of Aspergillus fungi as a potential infectious threat. In: Roy Priti R (ed) Insight and control of infectious disease in global scenario. IntechOpen, London, pp 231–248

    Google Scholar 

  17. Gniadek A, Macura AB, Twarużek M, Grajewski J (2010) Cytotoxicity of Aspergillus strains isolated from the neonatal intensive care unit environment. AdvMed Sci 55(2):242–249

    CAS  Google Scholar 

  18. Hocking AD, Pitt JI, Samson RA, Thrane U (2006) Advances in food mycology. Springer, New York

    Book  Google Scholar 

  19. Hoog GS, Guarro J (1995) Atlas of clinical fungi. Reus, Centraalbureau

    Google Scholar 

  20. Idso SB, Idso KE (2012) CO2 and soil fungi: a powerful combination that helps plants sequester more carbon. http://wwwCO2scienceorg//CarbonSequestration/Vol5phpAccessed 19 June 2018

  21. Jo WK, Lee JH (2008) Airborne fungal and bacterial levels associated with the use of automobile air conditioners or heaters, room air conditioners, and humidifiers. Arch Environ Occup Health 63:101–107

    Article  Google Scholar 

  22. Jodeh S, Hasan AR, Amarah J, Judeh F, Salghi R, Lgaz H, Jodeh W (2018) Indoor and outdoor air quality analysis for the city of Nablus in Palestine: seasonal trends of PM10, PM5.0, PM2.5, and PM1.0 of residential homes. Air Qual Atmos Health 11(2):229–237

    CAS  Article  Google Scholar 

  23. Khan AAH, Karuppayil SM (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19(4):405–426

    CAS  Article  Google Scholar 

  24. Kumar P, Marier R, Leech SH (1984) Respiratory allergies related to automobile air conditioners. N Engl J Med 311:1619–1621

    CAS  Article  Google Scholar 

  25. Li J, Li M, Shen F, Zou Z, Yao M, Wu C (2013) Characterization of biological aerosol exposure risks from automobile air conditioning system. Environ Sci Technol 47(18):10660–10666

    CAS  Google Scholar 

  26. Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC (2014) Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Glob Chang Biol 20(8):2555–2565

    Article  Google Scholar 

  27. Lobato RC, Vargas VS, Silveira ES (2009) Seasonality and prevalence of anemophilous fungi in a hospital setting in Southern Rio Grande do Sul, Brazil. Rev Fac Ciênc Med Soro 11(2):21–28

    Google Scholar 

  28. Matz CJ, Stieb DM, Davis K, Egyed M, Rose A, Chou B, BrionO (2014) Effects of age, season, gender and urban-rural status on time-activity: Canadian human activity pattern survey 2 (CHAPS 2). Int J Environ Res Public Health 11(2):2108–2124

    Article  Google Scholar 

  29. Melo LLS, Lima AMC, Damasceno CAV, Vieira ALP (2009) Environmental fungal flora in Pediatric and Neonatal Intensive Care Units at a tertiary hospital. Rev Paul Pediatr 27(3):303–308

  30. Mezzari A, Perin C, Santos AS Jr, Bernd LAG (2002) Airborne fungi in the city of Porto Alegre, Rio Grande do Sul, Brazil. Rev Inst Med Trop S Paulo 44(5):269–272

    Article  Google Scholar 

  31. Moazam S, Denning DW (2017) Aspergillus nodules in chronic granulomatous disease attributable toAspergillus ochraceus. Med Mycol Case Rep 17:31–33

    Article  Google Scholar 

  32. Mobin M, Salmito MA (2006) Fungal microbiota of air conditioners in the intensive care units of Teresina, PI. Rev Soc Bras Med Trop 39(6):556–559

    Article  Google Scholar 

  33. Mortensen K, Johansen H, Fuursted K, Knudsen J, Gahrn-Hansen B, Jensen R, Howard S, Arendrup M (2011) A prospective survey of Aspergillus spp. in respiratory tract samples: prevalence, clinical impact and antifungal susceptibility. Eur J Clin Microbiol Infect Dis 30(11):1355–1363

    CAS  Article  Google Scholar 

  34. Mota RJBS, Gil TGB, Lima FB, Moraes FAB, Farias AS (2014) Internal air quality in the hospital environment: an integrative review. Rev Saúde 8(1):44–52

    Google Scholar 

  35. Motta TP, Frizzarin A, Martins T, Miranda MS, Arcaro JRP, Ambrósio LA, Pozzi CR (2015) Study on the occurrence of fungi and aflatoxin B1 in the diet of dairy cattle in São Paulo. Pesq Vet Bras 35(1):23–28

    Article  Google Scholar 

  36. Nadumane VK, Venkatachalam P, Gajaraj B (2016) aspergillus applications in cancer research in:Gupta V (ed) new and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier, New York, pp 243–252

    Google Scholar 

  37. Narciso L, Maslinkiewicz A, Freitas DRJ (2014) A survey of respiratory diseases and their association with air-conditioned environments in the community of the western university of Santa Catarina in Xanxerê. Unoesc Cienc ACBS 79(special edition):85-92

  38. Nielsen KF (2003) Mycotoxin production by indoor molds. FungalGenet Biol39(2):103-117

  39. Normative Instruction n. 01 of March 7, 2005 (2005) Regulates the Ordinance no. 1.172/2004/GM, with regard to the competencies of the Union, states, municipalities and Federal District in the area of environmental health surveillance. http://bvsms.saude.gov.br/bvs/saudelegis/svs/2005/int0001_07_03_2005_rep.html.%20Accessed%2011%20April%202018. Accessed 12 April 2018

  40. Nowakowicz-Dębek B, Pawlak H, Wlazło L, Maksym P, Kapica J, Chmielowiec-Korzeniowska A, Trawińska B (2017) Evaluating bioaerosol exposure among bus drivers in the public transport sector. J Occup Environ Hyg 14(11):D169–D172

    Article  Google Scholar 

  41. Numbeo. South America: current pollution index by city. https://www.numbeo.com/pollution/region_rankings_current.jsp?region=005. Accessed 15 April 2018

  42. Oppliger A (2014) Advancing the science of bioaerosol exposure assessment. Ann Occup Hyg 58(6):661–663

    Article  Google Scholar 

  43. Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic and Professional, London

    Book  Google Scholar 

  44. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3ed illustrated. Springer Science & Business Media, London

    Book  Google Scholar 

  45. Quadros ME, Moreira IM, Campos PB, Schirmer WN, Lisboa HM (2008) Indoor air quality in automotive vehicles and public transport buses in terms of carbon dioxide concentration. https://www.researchgate.net/publication/254256898_Qualidade_do_ar_interno_em_veiculos_automotivos_e_onibus_de_transporte_publico_em_termos_da_concentracao_de_dioxido_de_carbono. Accessed 28 April 2018

  46. Quandt FL, Hackbarth BBH, Kovaleski DF, Moretti-Pires RO (2014) Environmental health and health care: construction and resignification of references. Cad Saúde Col 22(2):150–157

    Article  Google Scholar 

  47. Resolution n. 09 of January 16, 2003. (2003) Determines the publication of technical guidance prepared by Technical Advisory Group on Reference Standards of Indoor Air Quality in artificially air-conditioned environments for public and collective use. http://portal.anvisa.gov.br/documents/33880/2568070/RE_09_2003.pdf/f4af80d4-8516-4f9c-a745-cc8b4dc15727.Accessed 28 April 2018

  48. Ross C, Menezes JR, Svidzinski TIE, Albino U, Andrade G (2004) Studies on fungal and bacterial population of airconditioned environments. Braz Arch BiolTechno 47(5):827–835

    Article  Google Scholar 

  49. Ruping MJGT, Gerlach S, Fischer G, Lass-Florl C, Hellmich M, Vehreschild JJ, Cornely OA (2011) Environmental and clinical epidemiology of Aspergillus terreus: data from a prospective surveillance study. J Hosp Infect 78(3):226–230

    CAS  Article  Google Scholar 

  50. Santana WO, Fortuna JL (2012) Microbiota of air-conditioners in critical areas of public and private hospitals and their relation to hospital-acquired infections. Rev Biocienc 18(1):56–64

    Google Scholar 

  51. Sattar AS, Zargar B, Wright KE, Rubino JR, Ijaz MK (2017) Airborne pathogens inside automobiles for domestic use: assessing in-car air decontamination devices using Staphylococcus aureusas the challenge bacterium. Appl Environ Microbiol 83(10):e00258–e00217

    Article  Google Scholar 

  52. Schoenlein-Crusius I, Trufem SFB, Grandi RAP, Milanez AI, Pires-Zottarelli CLA (2001) Airborne fungi in the region of Cubatão, São Paulo State. Brazil Braz J Microbiol 32(1):61–65

    Article  Google Scholar 

  53. Silva EB, Gomes SR (2015) Air conditioning: hero or villain in intensive care units? Rev Interdisc Pensam Cient 1(1):222–286

    Google Scholar 

  54. Simmons RB, Noble JA, Rose L, Price DL, Crow SA, Ahearn DG (1997) Fungal colonization of automobile air conditioning systems. J Ind Microbiol Biotechnol 19:150–153

    CAS  Article  Google Scholar 

  55. Simmons RB, Rose LJ, Crow SA, Ahearn DG (1999) The occurrence and persistence of mixed biofilms in automobile air conditioning systems. Curr Microbiol 39:141–145

    CAS  Article  Google Scholar 

  56. UL Library (2017) Vehicle interior air quality: addressing chemical exposure in automobiles. https://library.ul.com/wp.../Vehicle-Interior-Air-Quality_final.pdf. Accessed 30 April 2018

  57. Varga J, Baranyi N, Chandrasekaran M, Vágvölgyi C, Kocsubé S (2015) Mycotoxin producers in the Aspergillus genus: an update. Acta Biol Szegediensis 59(2):151–167

    Google Scholar 

  58. Vermeulen E, Maertens J, De Bel A, Nulens A, Boelens J, Surmont I, Mertens A, Boel A, Lagrou K (2015) Nationwide surveillance of azole resistance in aspergillus diseases. Antimicrob Agents Chemother 59(8):4569–4576

    CAS  Article  Google Scholar 

  59. Viegas C, Faria T, Aranha L, Carolino E, Quintal GA, Viegas S (2017) Aspergillus prevails in different occupational settings. J Occup Environ Hyg 14(10):771–785

    Article  Google Scholar 

  60. Viegas C, Monteiro A, Santos M, Faria T, Caetano LA, Carolino E (2018) Filters from taxis air conditioning system: a tool to characterize driver’s occupational exposure to bioburden? Environ Res164:522–529

    CAS  Article  Google Scholar 

  61. Viegas C, Sabino R, Veríssimo C, Rosado L (2011) Environmental health and biomedicine. WIT Trans Biomed Health 15:127–133

    CAS  Article  Google Scholar 

  62. Vonberg RP, Gastmeier P, Kenneweg B, Holdack-Janssen H, Sohr D, Chaberny IF (2010) The microbiological quality of air improves when using air conditioning systems in cars. BMC Infect Dis 10:146

    Article  Google Scholar 

  63. Wang YF, Tsai CH, Huang YT, Chao HR, Tsou TC, Kuo YM, Wang LC, Chen SH (2013) Size distribution of airborne fungi in vehicles under various driving conditions. Arch Environ Occup Health 68:95–100

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Aquino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aquino, S., de Lima, J.E.A., do Nascimento, A.P.B. et al. Analysis of fungal contamination in vehicle air filters and their impact as a bioaccumulator on indoor air quality. Air Qual Atmos Health 11, 1143–1153 (2018). https://doi.org/10.1007/s11869-018-0614-0

Download citation

Keywords

  • Air-conditioning
  • Filters
  • Vehicles
  • Contamination
  • Fungi