Air Quality, Atmosphere & Health

, Volume 11, Issue 4, pp 397–407 | Cite as

Temporal patterns and trends of particulate matter over Portugal: a long-term analysis of background concentrations

  • Carla GamaEmail author
  • Alexandra Monteiro
  • Casimiro Pio
  • Ana Isabel Miranda
  • José María Baldasano
  • Oxana Tchepel


Air quality management regarding PM concentrations in the atmosphere is a complex problem to tackle. In this paper, we aim to characterize the temporal patterns and trends of aerosol background levels over Portugal. Hourly data from the national air quality monitoring network, gathered from 2007 to 2016, is analyzed using statistical methods. Data from 20 monitoring stations was processed to prepare datasets with different time scales, and results were grouped by their type of surrounding area (urban, suburban, or rural). Urban and suburban background sites are characterized by strong seasonal patterns, with higher monthly mean concentrations in winter than in summer. In contrast, rural background PM10 concentrations are highest during August and September. This study suggests that urban background concentrations are significantly influenced by anthropogenic non-combustion sources, which contribute to the coarser aerosol fraction (PMc). PMc is about 3 μg m−3 higher during weekdays than during Sundays, at urban sites. However, there is no clear relationship between the value of the PM2.5/PMc ratio and the type of monitoring station. During the 10-year period of study, a decrease of 1.83, 3.58, and 4.89%/year was registered in PM10 concentrations at Portuguese rural, urban, and suburban areas, respectively. Despite the higher decrease at suburban monitoring stations, those sites present the highest 10-year mean PM10 concentrations. This work provides an import insight on temporal variations of PM10, PM2.5, and PMc concentrations over Portugal and summarizes trends through the last decade, contributing to the discussion on sources and processes influencing those concentrations.


Particulate matter Portugal Seasonal patterns Air quality PM2.5/PMc ratio 



Thanks are due to the Portuguese Agency for the Environment (APA) and the Regional Coordination and Development Commissions (CCDRs) for their effort in establishing and maintaining the air quality monitoring sites used in this investigation.

Funding information

The authors gratefully acknowledge FCT—Portuguese Foundation for Science and Technology and FEDER (within the PT2020 Partnership Agreement and Compete 2020) for financing the PhD fellowship of C. Gama (SFRH/BD/87468/2012), the AIRSHIP research project (PTDC/AAG- MAA/1581/2014), and CESAM (UID/AMB/50017—POCI-01-0145-FEDER-007638) associated laboratory.


  1. Almeida S, Pio C, Freitas M, Reis M, Trancoso M (2006) Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: evaluation of road re-suspended dust contribution. Atmos Environ 40:2058–2067. CrossRefGoogle Scholar
  2. Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A, Alves C, Pio CA, Pacheco AMG (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Chem 281:215–218. CrossRefGoogle Scholar
  3. Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the western European coast urban aerosol. J Toxicol Environ Health A 76:252–262. CrossRefGoogle Scholar
  4. Alves C, Pio C, Duarte A (2001) Composition of extractable organic matter of air particles from rural and urban Portuguese areas. Atmos Environ 35:5485–5496. CrossRefGoogle Scholar
  5. Barmpadimos I, Keller J, Oderbolz D, Hueglin C, Prévôt ASH (2012) One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability. Atmos Chem Phys 12:3189–3203. CrossRefGoogle Scholar
  6. Borrego C, Valente J, Carvalho A, Sa E, Lopes M, Miranda AI (2010) Contribution of residential wood combustion to PM10 levels in Portugal. Atmos Environ 44:642–651. CrossRefGoogle Scholar
  7. Calvo A, Alves C, Castro A, Pont V, Vicente A, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28. CrossRefGoogle Scholar
  8. Carslaw DC, Ropkins K (2012) Openair—an R package for air quality data analysis. Environ Model Softw 27-28:52–61. CrossRefGoogle Scholar
  9. Cesari D, Benedetto GD, Bonasoni P, Busetto M, Dinoi A, Merico E, Chirizzi D, Cristofanelli P, Donateo A, Grasso F, Marinoni A, Pennetta A, Contini D (2018) Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in southern Italy. Sci Total Environ 612:202–213. CrossRefGoogle Scholar
  10. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat 6:3–73Google Scholar
  11. Cruz AMJ, Alves C, Gouveia S, Scotto MG, Freitas MC, Wolterbeek HT (2016) A wavelet-based approach applied to suspended particulate matter time series in Portugal. Air Qual Atmos Health 9:847–859. CrossRefGoogle Scholar
  12. Cusack M, Alastuey A, Pérez N, Pey J, Querol X (2012) Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the western Mediterranean over the last nine years (2002–2010). Atmos Chem Phys 12:8341–8357. CrossRefGoogle Scholar
  13. Custódio D, Cerqueira M, Alves C, Nunes T, Pio C, Esteves V, Frosini D, Lucarelli F, Querol X (2016) A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. Sci Total Environ 562:822–833. CrossRefGoogle Scholar
  14. Diapouli E, Manousakas MI, Vratolis S, Vasilatou V, Pateraki S, Bairachtari KA, Querol X, Amato F, Alastuey A, Karanasiou AA, Lucarelli F, Nava S, Calzolai G, Gianelle VL, Colombi C, Alves C, Custódio D, Pio C, Spyrou C, Kallos GB, Eleftheriadis K (2017) AIRUSE-LIFE+: estimation of natural source contributions to urban ambient air PM10 and PM2.5 concentrations in southern Europe—implications to compliance with limit values. Atmos Chem Phys 17:3673–3685. CrossRefGoogle Scholar
  15. Dingenen RV, Raes F, Putaud JP, Baltensperger U, Charron A, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Hüglin C, Jones AM, Laj P, Lorbeer G, Maenhaut W, Palmgren F, Querol X, Rodriguez S, Schneider J, ten Brink H, Tunved P, Tørseth K, Wehner B, Weingartner E, Wiedensohler A, Wåhlin P (2004) A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2561–2577. CrossRefGoogle Scholar
  16. EU (2008) Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L 152:11.6.2008Google Scholar
  17. Fuller GW, Tremper AH, Baker TD, Yttri KE, Butterfield D (2014) Contribution of wood burning to PM10 in London. Atmos Environ 87:87–94. CrossRefGoogle Scholar
  18. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, Gilardoni S (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299. CrossRefGoogle Scholar
  19. Gonçalves C, Alves C, Pio C (2012) Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal. Atmos Environ 50:297–306. CrossRefGoogle Scholar
  20. Guerreiro CBB, Foltescu V, de Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384. CrossRefGoogle Scholar
  21. Harrison RM, Laxen D, Moorcroft S, Laxen K (2012) Processes affecting concentrations of fine particulate matter (PM2.5) in the UK atmosphere. Atmos Environ 46:115–124. CrossRefGoogle Scholar
  22. López-Villarrubia E, Iñiguez C, Costa O, Ballester F (2016) Acute effects of urban air pollution on respiratory emergency hospital admissions in the Canary Islands. Air Qual Atmos Health 9:713–722. CrossRefGoogle Scholar
  23. Monteiro A, Russo M, Gama C, Lopes M, Borrego C (2017a) How economic crisis influence air quality over Portugal (Lisbon and Porto)? Atmos Pollut Res.
  24. Monteiro A, Sá E, Fernandes A, Gama C, Sorte S, Borrego C, Lopes M, Russo MA (2017b) How healthy will be the air quality in 2050? Air Qual Atmos Health.
  25. Ots R, Vieno M, Allan JD, Reis S, Nemitz E, Young DE, Coe H, Di Marco C, Detournay A, Mackenzie IA, Green DC, Heal MR (2016) Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmos Chem Phys 16:13773–13789. CrossRefGoogle Scholar
  26. Pey J, Querol X, Alastuey A, Forastiere F, Stafoggia M (2013) African dust outbreaks over the Mediterranean Basin during 2001-2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos Chem Phys 13:1395–1410. CrossRefGoogle Scholar
  27. Putaud JP, Dingenen RV, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson H, Harrison R, Herrmann H, Hitzenberger R, Hüglin C, Jones A, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch T, Löschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology—3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320. CrossRefGoogle Scholar
  28. Ropkins K, Carslaw DC (2012) Openair—data analysis tools for the air quality community. R J 4:20–29Google Scholar
  29. Slezakova K, Pereira MC, Reis MA, Alvim-Ferraz MC (2007) Influence of traffic emissions on the composition of atmospheric particles of different sizes—part 1: concentrations and elemental characterization. J Atmos Chem 58:55–68. CrossRefGoogle Scholar
  30. Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C 26:339–362. CrossRefGoogle Scholar
  31. Valverde V, Pay MT, Baldasano JM (2015) Circulation-type classification derived on a climatic basis to study air quality dynamics over the Iberian peninsula. Int J Climatol 35:2877–2897. CrossRefGoogle Scholar
  32. Vicente ED, Duarte MA, Calvo AI, Nunes TF, Tarelho L, Alves CA (2015) Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process Technol 131:182–192. CrossRefGoogle Scholar
  33. Wagener S, Langner M, Hansen U, Moriske HJ, Endlicher WR (2012) Spatial and seasonal variations of biogenic tracer compounds in ambient PM10 and PM1 samples in Berlin, Germany. Atmos Environ 47:33–42. CrossRefGoogle Scholar
  34. WHO-OCDE (2015) Economic cost of the health impact of air pollution in Europe: clean air, health and wealth. WHO Regional Office for Europe, CopenhagenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environment and PlanningCESAM, University of AveiroAveiroPortugal
  2. 2.Environmental Modeling LaboratoryTechnical University of CataloniaBarcelonaSpain
  3. 3.Department of Civil EngineeringCITTA, University of CoimbraCoimbraPortugal

Personalised recommendations