Air Quality, Atmosphere & Health

, Volume 11, Issue 1, pp 61–68 | Cite as

Investigating PM10 episodes using levoglucosan as tracer

  • Alexandra MonteiroEmail author
  • Sónia Gouveia
  • Manuel Scotto
  • Sandra Sorte
  • Carla Gama
  • Vorne L. Gianelle
  • Cristina Colombi
  • Célia Alves


The present study aims to investigate the role/contribution of residential combustion (using levoglucosan as a tracer of biomass combustion) during PM10 episode days registered over the Porto urban area (Portugal), in order to support air quality plans that need to be developed for this particular region. The levoglucosan and PM10 concentration values, together with the meteorological conditions (namely temperature), measured during an experimental field campaign performed in 2013, were used in this study. To this end, a wavelet-based approach is applied to (a) better quantify the coherence and dependency of these variables and (b) assess the strength of the connection between the two pollutants species (PM and levoglucosan) at different time scales. Results evidenced a high coherence/dependency between PM10 and levoglucosan values for the episodes selected (periods with exceedances of the PM10 limit values), suggesting the contribution of biomass combustion sources. The highest coherence (normalised covariance) is observed for the winter episodes and time periods of 5–10 days, which is related to the duration of the episodes selected. The summertime episode, which exhibits a negligible observed correlation between temperature and levoglucosan, is explained by the influence of forest fires that occurred within this period and region.


Levoglucosan Temperature Particulate matter Episodes Wavelet analysis 



The authors wish to thank the financial support from AIRUSE LIFE+ (ENV/ES/584) EU project. This work was partially supported by the Portuguese Foundation for Science and Technology (FCT), with national (MEC) and European structural funds through the programmes FEDER, under the partnership agreement PT2020—within IEETA/UA project UID/CEC/00127/2013 (Instituto de Engenharia Electrónica e Informática de Aveiro, IEETA/UA, Aveiro), CIDMA/UA project UID/MAT/04106/2013 (Centro de Investigação e Desenvolvimento em Matemática e Aplicações, CIDMA/UA, Aveiro) and CESAM (UID/AMB/50017-POCI-01-0145-FEDER-007638) within the PT2020 Partnership Agreement and Compete 2020. S. Gouveia and C. Gama acknowledge the postdoctoral and doctoral grants by FCT (SFRH/BPD/87037/2012 and SFRH/BD/87468/2012, respectively).


  1. Amato F, Alastuey A, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Severi M, Becagli S, Gianelle VL, Colombi C, Alves C, Custodio D, Nunes T, Cerqueira M, Pio C, Eleftheriadis K, Diapouli E, Reche C, Minguillon MC, Manousakas MI, Maggos T, Vratolis S, Harrison RM, Querol X (2016) AIRUSE-LIFE plus: a harmonized PM speciation and source apportionment in five southern European cities. Atmos Chem Phys 16(5):3289–3309CrossRefGoogle Scholar
  2. Bølling AK, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C (2009) Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6:29. CrossRefGoogle Scholar
  3. Borrego C, Sá E, Monteiro A, Ferreira J, Miranda AI (2009) Forecasting human exposure to atmospheric pollutants—a modelling approach. Atmos Environ 43:5796–5806. CrossRefGoogle Scholar
  4. Borrego C, Valente J, Carvalho A, Sá E, Lopes M, Miranda AI (2010) Contribution of residential wood combustion to PM10 levels in Portugal. Atmos Environ 44:642–651. CrossRefGoogle Scholar
  5. Brown SG, Lee T, Roberts PT, Collett JL Jr (2016) Wintertime residential biomass burning in Las Vegas, Nevada; marker components and apportionment methods. Atmosphere-Basel 7:58. CrossRefGoogle Scholar
  6. Calvo AI, Martins V, Nunes T, Duarte M, Hillamo R, Teinilae K, Pont V, Castro A, Fraile R, Tarelho L, Alves C (2015) Residential wood combustion in two domestic devices: relationship of different parameters throughout the combustion cycle. Atmos Environ 116:72–82CrossRefGoogle Scholar
  7. Caseiro A, Bauer H, Schmidl C, Pio CA, Puxbaum H (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43:2186–2195CrossRefGoogle Scholar
  8. Duque L, Relvas H, Silveira C, Ferreira J, Monteiro A, Gama C, Rafael S, Freitas S, Borrego C, Miranda AI (2016) Evaluating strategies to reduce urban air pollution. Atmos Environ 127:196–204. CrossRefGoogle Scholar
  9. Gelencsér A, May B, Simpson D, Sánchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Caseiro A, Pio C, Legrand M (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res 112(D23S04):1–12Google Scholar
  10. Giannoni M, Martellini T, Del Bubba M, Gambaro A, Zangrando R, Chiari M, Lepri L, Cincinelli A (2012) The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environ Pollut 167:7–15CrossRefGoogle Scholar
  11. Gonçalves C, Alves C, Pio C (2012) Inventory of fine particulate organic compound emissions from residential combustion in Portugal. Atmos Environ 50:297–306CrossRefGoogle Scholar
  12. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Process Geophys 11:561–566. CrossRefGoogle Scholar
  13. Hedberg E, Kristensson A, Ohlsson M, Johansson C, Johansson PÅ, Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36:4823–4837. CrossRefGoogle Scholar
  14. Hennigan CJ, Sullivan AP, Collett JL, Robinson AL (2010) Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys Res Lett 37:L09806CrossRefGoogle Scholar
  15. Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2010) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44:694–699CrossRefGoogle Scholar
  16. ICNF (2014) Relatório provisório de incêndios florestais (2014) Instituto de Conservação da Natureza e das Florestas. Departamento de Gestão de Áreas Classificadas, Públicas e de Proteção Florestal. Available at: Accessed 10 October 2017
  17. JRC- Joint Research Center, Institute for Environment and Sustainability (2014) Forest fires in Europe, Middle East and North Africa 2013. JRC Technical Reports. (online). Available at: Accessed 10 October 2017
  18. Krecl P, Larsson EH, Ström J, Johansson C (2008) Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization. Atmos Chem Phys 8:3639–3653CrossRefGoogle Scholar
  19. Lanz VA, Alfarra MR, Baltensperger U, Buchmann B, Hueglin C, Prévôt ASH (2007) Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos Chem Phys 7:1503–1522CrossRefGoogle Scholar
  20. Miranda A, Silveira C, Ferreira J, Monteiro A, Lopes D, Relvas H, Borrego C, Roebeling P, Turrini E, Volta M (2015) Current air quality plans in Europe designed to support air quality management policies. Atmos Pol Res 6:434–443. CrossRefGoogle Scholar
  21. Mochida M, Kawamura K, Fu P, Takemura T (2010) Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmos Environ 44:3511–3518CrossRefGoogle Scholar
  22. Monteiro A, Miranda AI, Borrego C, Vautard R (2007) Air quality assessment for Portugal. Sci Total Environ 373:22–31. CrossRefGoogle Scholar
  23. Monteiro A, Lopes J, Gouveia S, Scotto M, Feliciano M, Miranda AI (2016) Investigating ozone episodes in Portugal: a wavelet-based approach. Air Qual Atmos Health 9(7):775–783. CrossRefGoogle Scholar
  24. Nolte CG, Schauer JJ, Cass GR, Simoneit BRT (2001) Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environ Sci Technol 35:1912–1919CrossRefGoogle Scholar
  25. Percival and Walden 2006, Percival DB, Walden AT (2006) Wavelet methods for time series analysis. Cambridge University Press, CambridgeGoogle Scholar
  26. Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling. Sci Total Environ 414:343–355CrossRefGoogle Scholar
  27. Piazzalunga A, Fermo P, Bernardoni V, Vecchi R, Valli G, De Gregorio MA (2010) A simplified method for levoglucosan quantification in wintertime atmospheric particulate matter by high performance anionexchange chromatography coupled with pulsed amperometric detection. Int J Environ An Ch 90:934–947CrossRefGoogle Scholar
  28. Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res Research 112:D23S05Google Scholar
  29. Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinila K, Saarnio K, Seco R, Penuelas J, Mohr C, Prevot ASH, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci Total Environ 427-428:175–190CrossRefGoogle Scholar
  30. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. CrossRefGoogle Scholar
  31. Vicente E, Duarte M, Calvo AI, Nunes T, Tarelho L, Custódio D, Colombi C, Gianelle C, Sanchez de la Campa A, Alves C (2015) Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion. Atmos Res 166:92–100CrossRefGoogle Scholar
  32. Vu B, Alves CA, Gonçalves C, Pio C, Gonçalves F, Pereira R (2012) Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal. Environ Pollut 166:172–181CrossRefGoogle Scholar
  33. Zdráhal Z, Oliveira J, Vermeylen R, Claeys M, Maenhaut W (2002) Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environ Sci Technol 36:747–753CrossRefGoogle Scholar
  34. Zeri M, Oliveira JF, Lyra GB (2011) Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteor Atmos Phys 113:139–152CrossRefGoogle Scholar
  35. Zeri M, Carvalho VSB, Cunha-Zeri G, Oliveira-Júnior JF, Lyra GB, Freitas ED (2016) Assessment of the variability of pollutants concentration over the metropolitan area of São Paulo, Brazil, using the wavelet transform. Atmos Sci Lett 17:87–95CrossRefGoogle Scholar
  36. Zhang X, Hecobian A, Zheng M, Frank NH, Weber RJ (2010) Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmos Chem Phys 10:6839–6853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CESAM and Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Institute of Electronics and Informatics Engineering of Aveiro (IEETA) and Center for R&D in Mathematics and Applications (CIDMA)University of AveiroAveiroPortugal
  3. 3.CEMAT and Department of MathematicsIST University of LisbonLisbonPortugal
  4. 4.Environmental Monitoring SectorArpa LombardiaMilanItaly

Personalised recommendations