Mapping air pollutants at municipality level in Italy and Spain in support to health impact evaluations

Abstract

A growing health concern, due to poor air quality, recently led to an increased number of studies regarding air pollution effects on public health. Consequently, close attention is paid to estimation methods of exposure to atmospheric pollutants. This paper aims to meet a specific requirement of epidemiological researchers, that is providing annual air pollution maps at municipality scale for health impact assessment purposes on national basis. Firstly, data fusion through kriging with external drift is implemented, combining pollution data from two different sources, models and measurements, in order to improve the spatial distribution of surface concentrations at grid level. Then, the assimilated data of air pollution are upscaled, so as to obtain concentrations at municipality level. This methodology was applied to Italy and Spain (in Spain, only the second step was carried out since the modeled concentration already included an assimilation procedure). In both countries, for each municipality, an estimate of the concentration value for atmospheric pollutants of major concern for human health (PM10 and NO2) was provided, offering more relevant information from a surveillance point of view.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    The national system: http://www.brace.sinanet.apat.it/

  2. 2.

    The European air quality database: http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7

  3. 3.

    http://www.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2

References

  1. Aguilera I, Basagaña X, Pay M, Agis D, Bouso L, Foraster M, Rivera M, Baldasano JM, Künzli N (2013) Evaluation of the CALIOPE air quality forecasting system for epidemiological research: the example of NO2 in the province of Girona (Spain). Atmos Environ 72:134–141

    CAS  Article  Google Scholar 

  2. ARIA/ARIANET (2008) EMMA (EMGR/make) User manual. Arianet, Milano, Italy, R2008.99

  3. Arunachalam S, Valencia A, Akita Y, Serre M, Omary M, Garcia V, Isakov V (2014) A method for estimating urban background concentrations in support of hybrid air pollution modeling for environmental health studies. Int J Environ Res Publ Health 11:10, 518–10,536

    Article  Google Scholar 

  4. Baccini M, Grisotto L, Catelan D, Consonni D, Bertazzi PA, Biggeri A (2015) Commuting-adjusted short-term health impact assessment of airborne fine particles with uncertainty quantification via Monte Carlo simulation. Environ Health Perspect 123(1):27–33. https://doi.org/10.1289/ehp.1408218

    CAS  Google Scholar 

  5. Baldasano JM, Jiménez-Guerrero P, Jorba O, Pérez C, López E, Güereca P, Martin F, García-Vivanco M, Palomino I, Querol X, Pandolfi M, Sanz M, Diéguez J (2008) CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands—first annual evaluation and ongoing developments. Adv Sci Res 2:89–98. http://www.adv-sci-res.net/2/89/2008/

    Article  Google Scholar 

  6. Baldasano JM, Pay MT, Jorba O, Gassó S, Jiménez-Guerrero P (2011) An annual assessment of air quality with the CALIOPE modeling system over Spain. Sci Total Environ 409(11):2163–2178

    CAS  Article  Google Scholar 

  7. Bessagnet B, Pirovano G, Mircea M, Cuvelier C, Aulinger A, Calori G, Ciarelli G, Manders A, Stern R, Tsyro S, García Vivanco M, Thunis P, Pay MT, Colette A, Couvidat F, Meleux F, Rouïl L, Ung A, Aksoyoglu S, Baldasano JM, Bieser J, Briganti G, Cappelletti A, D’Isidoro M, Finardi S, Kranenburg R, Silibello C, Carnevale C, Aas W, Dupont JC, Fagerli H, Gonzalez L, Menut L, Prévôt ASH, Roberts P, White L (2016) Presentation of the EURODELTA III intercomparison exercise—evaluation of the chemistry transport models’ performance on criteria pollutants and joint analysis with meteorology. Atmos Chem Phys 16(19):12,667–12,701

    CAS  Article  Google Scholar 

  8. Binkowski FS (1999) The aerosol portion of models-3 CMAQ. In: Byun DW, Ching JKS (eds) Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system, pp 1–23. EPA-600/R-99/030

  9. Blangiardo M, Cameletti M, Baio G, Rue H (2013) Spatial and spatio-temporal models with R-INLA. Spat Spatio-Temporal Epidemiol 4:33–49

    Article  Google Scholar 

  10. Box GEP, Cox DR (1964) An analysis of transformations. J Royal Stat Soc Ser B 26:211–246

    Google Scholar 

  11. Byun D, Schere K L (2006) Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl Mech Rev 59(2):51–77

    Article  Google Scholar 

  12. Cadum E, Rowinski M, Berti G, Basagaña X, Ciancarella L, Spadea T, Annesi-Maesano I, Otorepec P, Zanini G, Costa G (2016) LIFE MED HISS ENV/it/000834: an ‘health surveillance’ pilot project on long term effects exposure to air pollution to implement a european system. In: Abstracts of the 2016 meeting of the International Society for Environmental Epidemiology (ISEE), pp P2–310. https://doi.org/10.1289/ehp.isee2016

  13. Calori G, Finardi S, Nanni A, Radice P, Riccardo S, Bertello A, Pavone F (2008) Long-term air quality assessment: modeling sources contribution and scenarios in Ivrea and Torino areas. Environ Model Assess 13(3):329–335

    Article  Google Scholar 

  14. Cameletti M (2013) The change of support problem through the INLA approach. Stat Appl Special Issue:29–43

    Google Scholar 

  15. Carnevale C, Finzi G, Pisoni E, Singh V, Volta M (2011) An integrated air quality forecast system for a metropolitan area. J Environ Monit 13:3437–3447

    CAS  Article  Google Scholar 

  16. Carnevale C, Finzi G, Pederzoli A, Pisoni E, Thunis P, Turrini E, Volta M (2015) A methodology for the evaluation of re-analyzed PM10 concentration fields: a case study over the PO valley. Air Quality. Atmos Health 8(6):533–544

    CAS  Article  Google Scholar 

  17. Carter WPL (1999) Documentation of the SAPRC-99 mechanism for VOC reactivity assessment. Technical report, http://www.cert.ucr.edu/carter/reactdat.htm

  18. Chang JC, Hanna S (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87:167–196

    Article  Google Scholar 

  19. Chen G, Li J, Ying Q, Sherman S, Perkins N, Rajeshwari S, Mendola P (2014) Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation. Sci Total Environ 485–486:563–574

    Article  Google Scholar 

  20. Ciancarella L, Adani M, Briganti G, Cappelletti A, Ciucci A, Cremona G, D’Elia I, D’Isidoro M, Mircea M, Piersanti A, Righini G, Russo F, Vitali L, Zanini G (2016) La simulazione nazionale di AMS-MINNI relativa all’anno 2010. Technical Report RT-2016-12-ENEA ENEA, Bologna

    Google Scholar 

  21. Cotton WR, Pielke Sr RA, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) RAMS 2001: current status and future directions. Meteorol Atmos Phys 82(1):5–29

    Article  Google Scholar 

  22. Cressie N A (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  23. de Keijzer C, Agis D, Ambrós A, Arévalo G, Baldasano JM, Bande S, Barrera-Gómez J, Benach J, Cirach M, Dadvand P, Ghigo S, Martinez-Solanas E, Nieuwenhuijsen M, Cadum E, Basagaña X (2017) The association of air pollution and greenness with mortality and life expectancy in spain: a small-area study. Environ Int 99:170–176

    Article  Google Scholar 

  24. Denby B, Georgieva E, Lükewille A (2011) The application of models under the European Union’s Air Quality Directive: a technical reference guide. Technical Report 10/2011, European Environmental Agency, Copenhagen

    Google Scholar 

  25. Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  26. Fuentes M, Raftery A (2005) Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1):36–45

    Article  Google Scholar 

  27. Gariazzo C, Silibello C, Finardi S, Radice P, Piersanti A, Calori G, Cecinato A, Perrino C, Nusio F, Cagnoli M, Pelliccioni A, Gobbi G P, Di Filippo P (2007) A gas/aerosol air pollutants study over the urban area of rome using a comprehensive chemical transport model. Atmos Environ 41:7286–7303

    CAS  Article  Google Scholar 

  28. Gariazzo C, Hänninen O, Amicarelli A, Pelliccioni A, Silibello C, Sozzi R, Jantunen M (2011) Integrated model for the estimation of annual, seasonal, and episode PM10 exposures of children in Rome, Italy. Air Qual. Atmos. Health 4:169–178

    CAS  Article  Google Scholar 

  29. Gelfand A, Sahu S, O’Hagan A, West M (2010) Combining monitoring data and computer model output in assessing environmental exposure. In: The Oxford Handbook of Applied Bayesian Analysis. Oxford University Press, Oxford

  30. Gelfand A, Zhu L, Carlin BP (2001) On the change of support problem for spatio-temporal data. Biostatistics 2(1):31–45

    CAS  Article  Google Scholar 

  31. Guevara M, Martínez F, Arévalo S, Gassó G, Baldasano J (2013) Improved system for modelling spanish emissions: HERMESv2.0. Atmos Environ 81:209–221. https://doi.org/10.1016/j.atmosenv.2013.08.053

    CAS  Article  Google Scholar 

  32. Hystad P, Demers PA, Johnson KC, Brook J, van Donkelaar A, Lamsa L, Martin R, Brauer M (2012) Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study. Environ Health 11:22

    CAS  Article  Google Scholar 

  33. Ignaccolo R, Ghigo S, Bande S (2013) Functional zoning for air quality. Environ Ecol Stat 20(3):321–339

    Google Scholar 

  34. Kiesewetter G, Borken-Kleefeld J, Schöpp W, Heyes C, Thunis P, Bessagnet B, Terrenoire E, Gsella A, Amann M (2014) Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmos Chem Phys 14:813–829

    Article  Google Scholar 

  35. Kim SY, Yi SJ, Eum YS, Choi HJ, Shin H, Ryou HG, Kim H (2014) Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities. Environmental Health and Toxicology 29:8. https://doi.org/10.5620/eht.e2014012

  36. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W, Zwieflhofer W, Mozdzynski G (2005) The weather research and forecast model: software architecture and performance. In: Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, pp 156–168

  37. Mircea M, Zanini G, Briganti G, Cappelletti A, Pederzoli A, Vitali L, Pace G, Marri P, Silibello C, Finardi S, Calori G (2010) Modelling air quality over Italy with MINNI atmospheric modelling system: from regional to local scale. In: Steyn D G (ed) STC Air Pollution Modelling and its Application, https://doi.org/10.1007/978-94-007-1359-9_82

  38. Mircea M, Ciancarella L, Briganti G, Calori G, Cappelletti A, Cionni I, Costa M, Cremona G, D’Isidoro M, Finardi S, Pace G, Piersanti A, Righini G, Silibello C, Vitali L, Zanini G (2014) Assessment of the AMS-MINNI system capabilities to predict air quality over Italy for the calendar year 2005. Atmos Environ 84:178–188

    CAS  Article  Google Scholar 

  39. Mircea M, Grigoras G, D’Isidoro M, Righini G, Adani M, Briganti G, Ciancarella L, Cappelletti A, Calori G, Cionni CGI, Finardi S, Larsen BR, Pace G, Perrino C, Piersanti A, Silibello VLC, Zanini G (2016) Impact of grid resolution on aerosol predictions: a case study over italy. Aerosol Air Qual Res 16:1253–1267. https://doi.org/10.4209/aaqr.2015.02.0058

    CAS  Article  Google Scholar 

  40. Monforti F, Pederzoli A (2005) THOSCANE: a tool to detail CORINAIR emission inventories, vol 20

  41. Montero J, Fernández-Avilés G (2015) Functional kriging prediction of pollution series: the geostatistical alternative for spatially-fixed data. Estud Econ Apl 1:145–174

    Google Scholar 

  42. Park N (2016) Time-series mapping of PM10 concentration using multigaussian space-time kriging: a case study in the Seoul Metropolitan Area, Korea. Advances in Meteorology 2016, https://doi.org/10.1155/2016/9452080

  43. Pay MT, Jiménez-Guerrero P, Jorba O, Basart S, Querol X, Pandolfi M, Baldasano JM (2012) Spatio-temporal variability of concentrations and speciation of particulate matter across Spain in the CALIOPE modeling system. Atmos Environ 46:376–396

    CAS  Article  Google Scholar 

  44. Pérez C, Nickovic S, Baldasano JM, Sicard M, Rocadenbosch F, Cachorro VE (2006a) A long Saharan dust event over the Western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling. J Geophys Res, 111, D15. https://doi.org/10.1029/2005JD006579

  45. Pérez C, Nickovic S, Pejanovic G, Baldasano JM, Özsoy E (2006b) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophys Res, 111, D16. https://doi.org/10.1029/2005JD006717

  46. Pernigotti D, Thunis P, Cuvelier C, Georgieva E, Gsella A, De Meij A, Pirovano G, Balzarini A, Riva GM, Carnevale C, Pisoni E, Volta M, Bessagnet B, Kerschbaumer A, Viaene P, De Ridder K, Nyiri A, Wind P (2013) POMI: a model inter-comparison exercise over the Po Valley. Air Qual Atmos Health 6(4):701–715

    Article  Google Scholar 

  47. Ribeiro JR, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-NEWS 1(2):15–18

    Google Scholar 

  48. Shao X, Stein M, Ching J (2007) Statistical comparisons of methods for interpolating the output of a numerical air quality model. J Stat Plann Infer 137(7):2277–2293

    Article  Google Scholar 

  49. Sicardi V, Ortiz A, Rincón J, Jorba O, Pay MT, Gassó S, Baldasano JM (2012) Assessment of Kalman filter bias-adjustment technique to improve the simulation of ground-level ozone over Spain. Sci Total Environ 416:329–342

    CAS  Article  Google Scholar 

  50. Silibello C, Calori G, Brusasca G, Giudici A, Angelino E, Fossati G, Peroni E, Buganza E (2008) Modelling of PM10 concentrations over Milano urban area using two aerosol modules. Environ Modell Softw 23:333–343

    Article  Google Scholar 

  51. Silibello C, Bolignano A, Sozzi R, Gariazzo C (2014) Application on chemical transport model and optimized data assimilation methods to provide air quality assessment. Air Quality Atmosphere & Health https://doi.org/10.1007/s11869-014-0235-1

  52. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  53. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Technical note

  54. Van de Kassteele J, Stein A, Dekkers ALM, Velders GJM (2009) External drift kriging of NO x concentrations with dispersion model output in a reduced air quality monitoring network. Environ Ecol Stat 16 (3):321–339

    Article  Google Scholar 

  55. Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Google Scholar 

  56. World Health Organization (2015a) Economic cost of the health impact of air pollution in Europe: clean air, health and wealth. Technical report, WHO Regional Office for Europe, Copenhagen

  57. World Health Organization (2015b) Health and the environment: addressing the health impact of air pollution. Draft resolution proposed by the delegations of Albania, Chile, Colombia, France, Germany, Monaco, Norway, Panama, Sweden, Switzerland, Ukraine, United States of America, Uruguay and Zambia. In: WHA68, 68th World Health Assembly, Geneva, Switzerland, http://www.who.int/iris/handle/10665/253206

  58. Zanini G, Pignatelli T, Monforti F, Vialetto G, Vitali L, Brusasca G, Calori G, Finardi S, Radice P, Silibello C (2005) The MINNI Project: an integrated assessment modelling system for policy making. Proceedings of MODSIM 2005 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, 2005–2011, https://www.mssanz.org.au/modsim05/papers/zanini.pdf

Download references

Acknowledgements

The research described in this article was conducted under the grant agreement European Commission, Environment LIFE12 ENV/IT/000834. The authors declare they have no actual or potential competing financial interests.

The authors wish to thank Nino Küenzli from Swiss Tropical and Public Health Institute and Xavier Querol from Institute for Environmental. Assessment and Water Research IDAEA-CSIC (Spanish Research Council) for their assistance during the project and their valuable suggestions.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stefania Ghigo.

Additional information

Members of the LIFE MED HISS Study group: Italy: S. Bande, G. Berti, G. Briganti, E. Cadum, A. Cappelletti, P. Carná, L. Ciancarella, G. Cremona, M. Clemente, G. Costa, M. Demaria, R. De Maria, E. Ferracin, M. Gandini, S. Ghigo, R. Gnavi, M. Grosa, M. Mircea, R. Onorati, A. Piersanti, G. Righini, M. Rowinski, C. Scarinzi, T. Spadea, G. Zanini; France: N. Baïz, S. Banerjee, JF. Bertholon, A. Fouad, C. Maesano, AM. Magnier, S. Launois, I. Annesi-Maesano, A. Moustafa, S. Sanyal; Slovenia: K. Bitenc, I. Erzen, T. Grc̆a, A. Kukec, P. Otorepec, M. Rus, L. Zaletel-Krageli; Spain: D. Agis, G. Arévalo, J. M Baldasano, J. Barrera-Gómez, X. Basagaña, J. Benach, È. Martinez-Solanas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 919 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghigo, S., Bande, S., Ciancarella, L. et al. Mapping air pollutants at municipality level in Italy and Spain in support to health impact evaluations. Air Qual Atmos Health 11, 69–82 (2018). https://doi.org/10.1007/s11869-017-0520-x

Download citation

Keywords

  • Data fusion
  • Atmospheric pollution
  • CTM models
  • Health impact assessment
  • Upscaling