Skip to main content

Influences of inorganic and polycyclic aromatic hydrocarbons on the sources of PM2.5 in the Southeast Asian urban sites

Abstract

PM2.5 released from urban sources and regional biomass fire is of great concern due to the deleterious effect on human health. This study was conducted to determine the chemical compositions andsource apportionment of PM2.5. Twenty-four-hour PM2.5 samples were collected at two urban monitoring sites in Kuala Lumpur, Malaysia, from 12 November 2013 to 15 January 2014 using a high volume air sampler (HVS). The source apportionment of PM2.5 was determined using positive matrix factorization (PMF) version 5.0. Overall, the PM2.5 mean concentrations ranged from 16 to 55 μg m−3 with a mean of 23 ± 9 μg m−3. The results of enrichment factor (EF) analysis showed that Zn, Pb, As, Cu, Cr, V, Ni, and Cs mainly originated from non-crustal sources. The dominant polycyclic aromatic hydrocarbons (PAHs) were benzo[b]fluoranthene (B[b]F), benzo[ghi]perylene (B[ghi]P), indeno[1,2,3-cd]pyrene (I[cd]P), benzo[a]pyrene (B[a]P) and benzo[k]fluoranthene (B[k]F). PMF 5.0 results showed that the secondary aerosol coupled with biomass burning was the largest contributor followed by combustion of fuel oil and road dust, soil dust source and sea salt and nitrate aerosol, accounting for 34, 25, 24 and 17% of PM2.5 mass, respectively. On the other hand, biomass and wood burning (42%) was the predominant source of PAHs followed by combustion of fossil fuel (36%) and natural gas and coal burning (22%). The broad overview of the PM2.5 sources will help to adopt adequate mitigation measures in the management of future urban air quality in this region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abas MR, Simoneit BRT (1996) Composition of extractable organic matter of air particles from Malaysia. Initial Stud Atmos Environ 30:2779–2793. doi:10.1016/1352-2310(95)00336-3

    CAS  Article  Google Scholar 

  2. Alves CA., Gomes J, Nunes T, Duarte M, Calvo A, Custódio D, Pio C, Karanasiou A, Querol X (2015) Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos Res 153:134–144

  3. Amil N, Latif MT, Khan MF, Mohamad M (2016) Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmos Chem Phys 16:5357–5381. doi:10.5194/acp-16-5357-2016

  4. Akyüz M, Çabuk H (2010) Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408(22):5550–5558

  5. Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Fulara I, Mielżyńska-Švach D (2017) Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens. Poland Air Qual Atmos Health 10:389–400. doi:10.1007/s11869-016-0457-5

  6. Brandli RC, Bucheli TD, Ammann S, Desaules A, Keller A, Blum F, Stahel WA (2008) Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. J Environ Monit 10(11):1278

  7. Cheung K, Shafer MM, Schauer JJ, Sioutas C (2012) Historical trends in the mass and chemical species concentrations of coarse particulate matter in the Los Angeles Basin and relation to sources and air quality regulations. J Air Waste Mange Assoc 62:541–556. doi:10.1080/10962247.2012.661382

    CAS  Article  Google Scholar 

  8. Dall'Osto M, Querol X, Amato F, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Chiari M (2013) Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS—diurnal variations and PMF receptor modelling. Atmos Chem Phys 13:4375–4392. doi:10.5194/acp-13-4375-2013

  9. De La Torre-Roche RJ, Lee WY, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958

  10. Di Filippo P, Riccardi C, Pomata D, Buiarelli F (2010) Concentrations of PAHs, and nitro- and methyl- derivatives associated with a size-segregated urban aerosol. Atmos Environ 44:2742–2749. doi:10.1016/j.atmosenv.2010.04.035

    Article  Google Scholar 

  11. Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, MacDonald EH (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640. doi:10.1021/es000971e

  12. Echalar F, Gaudichet A, Cachier H, Artaxo P (1995) Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. Geophys Res Lett 22:3039–3042. doi:10.1029/95GL03170

    CAS  Article  Google Scholar 

  13. Ewen C, Anagnostopoulou M, Ward N (2009) Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow. Environ Monit Assess 157:483–498. doi:10.1007/s10661-008-0550-9

    CAS  Article  Google Scholar 

  14. Fang G-C, Lin S-C, Chang S-Y, Lin C-Y, Chou C-CK, Wu Y-J, Chen Y-C, Chen W-T, Wu T-L (2011) Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan. J Environ Manag 92:1520–1527. doi:10.1016/j.jenvman.2011.01.011

  15. Gaita SM, Boman J, Gatari MJ, Pettersson JBC, Janhäll S (2014) Source apportionment and seasonal variation of PM2.5 in a Sub-Saharan African city: Nairobi, Kenya. Atmos Chem Phys 14:9977–9991. doi:10.5194/acp-14-9977-2014

  16. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832. doi:10.1021/es950252d

    CAS  Article  Google Scholar 

  17. Hasheminassab S, Daher N, Saffari A, Wang D, Ostro BD, Sioutas C (2014) Spatial and temporal variability of sources of ambient fine particulate matter (PM2.5) in California. Atmos Chem Phys 14:12085–12097. doi:10.5194/acp-14-12085-2014

    Article  Google Scholar 

  18. IARC (2013) International Agency for Research on Cancer. Air pollution and cancer/editors, K. Straif, A. Cohen, J. Samet.

  19. Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Mohd Tahir N (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 86:16–27. doi:10.1016/j.atmosenv.2013.12.019

    CAS  Article  Google Scholar 

  20. Khairy MA, Lohmann R (2013) Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere 91:895–903. doi:10.1016/j.chemosphere.2013.02.018

    CAS  Article  Google Scholar 

  21. Khan MF, Latif MT, Lim CH, Amil N, Jaafar SA, Dominick D, Mohd Nadzir MS, Sahani M, Tahir NM (2015) Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmos Environ 106:178–190. doi:10.1016/j.atmosenv.2015.01.077

  22. Khan MF, Latif MT, Saw WH, Amil N, Nadzir MSM, Sahani M, Tahir NM, Chung JX (2016a) Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmos Chem Phys 16:597–617. doi:10.5194/acp-16-597-2016

  23. Khan MF, Shirasuna Y, Hirano K, Masunaga S (2010) Urban and suburban aerosol in Yokohama, Japan: a comprehensive chemical characterization. Environ Monit Assess 171:441–456. doi:10.1007/s10661-009-1290-1

    CAS  Article  Google Scholar 

  24. Khan MF, Sulong NA, Latif MT, Nadzir MSM, Amil N, Hussain DFM, Lee V, Hosaini PN, Shaharom SY, Nur Amira YM, Hoque HMS, Chung JX, Sahani M, Mohd Tahir N, Juneng L, Maulud KNA, Abdullah SMS, Fujii Y, Tohno S and Mizohata A (2016b) Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). J Geophys Res Atmos 121:2016JD025894. doi:10.1002/2016JD025894

  25. Kim BM, Lee S-B, Kim JY, Kim S, Seo J, Bae G-N, Lee JY (2016) A multivariate receptor modeling study of air-borne particulate PAHs: regional contributions in a roadside environment. Chemosphere 144:1270–1279. doi:10.1016/j.chemosphere.2015.09.087

    CAS  Article  Google Scholar 

  26. Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Persp 108:941–947

    CAS  Article  Google Scholar 

  27. Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56:867–878. doi:10.1016/j.chemosphere.2004.03.013

    CAS  Article  Google Scholar 

  28. Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455. doi:10.1021/es970566w

    CAS  Article  Google Scholar 

  29. Mohd Tahir N, Suratman S, Fong FT, Hamzah MS, Latif MT (2013) Temporal distribution and chemical characterization of atmospheric particulate matter in the eastern coast of peninsular Malaysia. Aerosol Air Qual Res 13:584–595

    Google Scholar 

  30. Norris G, Duvall R, Brown S, Bai S (2014) EPA positive matrix factorization (PMF) 5.0 fundamentals & user guide. Prepared for the US Environmental Protection Agency, Washington, DC, by the National Exposure Research Laboratory, Research Triangle Park.

  31. Ogulei D, Hopke PK, Wallace LA (2006a) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16:204–215. doi:10.1111/j.1600-0668.2006.00418.x

    CAS  Article  Google Scholar 

  32. Ogulei D, Hopke PK, Zhou L, Patrick Pancras J, Nair N, Ondov JM (2006b) Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos Environ 40(Supplement 2):396–410. doi:10.1016/j.atmosenv.2005.11.075

    Article  Google Scholar 

  33. Omar NYMJ, Mon TC, Rahman NA, Abas MRB (2006) Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. Sci Total Environ 369:76–81. doi:10.1016/j.scitotenv.2006.04.032

    CAS  Article  Google Scholar 

  34. Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab Syst 37:23–35. doi:10.1016/S0169-7439(96)00044-5

    CAS  Article  Google Scholar 

  35. Paatero P, Eberly S, Brown SG, Norris GA (2014) Methods for estimating uncertainty in factor analytic solutions. Atmos Meas Tech 7:781–797. doi:10.5194/amt-7-781-2014

    Article  Google Scholar 

  36. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126. doi:10.1002/env.3170050203

    Article  Google Scholar 

  37. Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97. doi:10.1016/j.atmosenv.2013.04.028

    CAS  Article  Google Scholar 

  38. Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72(10):1594–1601

  39. Phoothiwut S, Junyapoon S (2013) Size distribution of atmospheric particulates and particulate-bound polycyclic aromatic hydrocarbons and characteristics of PAHs during haze period in Lampang Province, Northern Thailand. Air Qual Atmos Health 6:397–405. doi:10.1007/s11869-012-0194-3

    CAS  Article  Google Scholar 

  40. Rajput P, Sarin MM, Rengarajan R, Singh D (2011) Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ 45:6732–6740. doi:10.1016/j.atmosenv.2011.08.018

    CAS  Article  Google Scholar 

  41. Rogula-Kozłowska W (2016) Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Health 9:533–550. doi:10.1007/s11869-015-0359-y

    Article  Google Scholar 

  42. Romieu I, Meneses F, Ruiz S, Sienra JJ, Huerta J, White MC, Etzel RA (1996) Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Resp Crit Care 154:300–307. doi:10.1164/ajrccm.154.2.8756798

    CAS  Article  Google Scholar 

  43. Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079. doi:10.1016/S1352-2310(99)00233-2

    CAS  Article  Google Scholar 

  44. Song CH, Carmichael GR (1999) The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmos Environ 33:2203–2218. doi:10.1016/S1352-2310(98)00301-X

    CAS  Article  Google Scholar 

  45. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. doi:10.1175/bams-d-14-00110.1

    Article  Google Scholar 

  46. Sternbeck J, Sjödin Å, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744. doi:10.1016/S1352-2310(02)00561-7

    CAS  Article  Google Scholar 

  47. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, Chan KM, Sahani M (2017) Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci Total Environ 601–602:556–570

  48. Sun F, Littlejohn D, David Gibson M (1998) Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection1. Anal Chim Acta 364:1–11. doi:10.1016/S0003-2670(98)00186-X

    CAS  Article  Google Scholar 

  49. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285. doi:10.1016/0016-7037(64)90129-2

    CAS  Article  Google Scholar 

  50. USEPA (2016) Polycyclic organic matter. http://www3.epa.gov/airtoxics/hlthef/polycycl.html. Accessed 27/01/2016

  51. Vallius M, Janssen NAH, Heinrich J, Hoek G, Ruuskanen J, Cyrys J, Van Grieken R, de Hartog JJ, Kreyling WG, Pekkanen J (2005) Sources and elemental composition of ambient PM2.5 in three European cities. Sci Total Environ 337:147–162. doi:10.1016/j.scitotenv.2004.06.018

  52. Wang Y, Hopke PK (2014) Is Alaska truly the great escape from air pollution?–long term source apportionment of fine particulate matter in Fairbanks, Alaska. Aerosol Air Qual Res 14:1875–U1101

    CAS  Google Scholar 

  53. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. doi:10.1016/S0146-6380(02)00002-5

    CAS  Article  Google Scholar 

  54. Zhang Z, Gao J, Engling G, Tao J, Chai F, Zhang L, Zhang R, Sang X, Chan C-y, Lin Z, Cao J (2015) Characteristics and applications of size-segregated biomass burning tracers in China’s Pearl River Delta region. Atmos Environ 102:290–301

Download references

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia for Research University Grants (DIP-2016-015 and GGPM-2016-034) and the Ministry of Education for the Fundamental Research Grant (FRGS/1/2015/WAB03/UKM/01/1). The meteorological data applied to the HYSPLIT model were accessible at ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis. Special thanks go to Dr. Rose Norman for proofreading this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md Firoz Khan.

Additional information

Research Highlights

• We determined the source apportionment analysis based on PM2.5 composition

• SO4 2−, NO3 , NH4 +, Na, Al, K and Mg were major inorganic elements in PM2.5

• B[b]F and B[ghi]P were the most abundant PAHs in atmospheric PM2.5

• Secondary/biomass, fuel oil/road dust and soil were the predominant PM2.5 sources

• Biomass and wood burning were the predominant sources of PAHs

Electronic supplementary material

ESM 1

(DOCX 2451 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.F., Hwa, S.W., Hou, L.C. et al. Influences of inorganic and polycyclic aromatic hydrocarbons on the sources of PM2.5 in the Southeast Asian urban sites. Air Qual Atmos Health 10, 999–1013 (2017). https://doi.org/10.1007/s11869-017-0489-5

Download citation

Keywords

  • Urban environment
  • Source apportionment
  • Positive matrix factorization
  • Enrichment factor
  • Polycyclic aromatic hydrocarbon
  • PM2.5