Skip to main content

Advertisement

Log in

Redox characteristics of size-segregated PM from different public transport microenvironments in Hong Kong

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Exposure to airborne particulate matter (PM) has been associated with various adverse health effects, including severe pulmonary and cardiovascular effects. PM consists of different chemical components that vary with microenvironments in urban areas and pose challenges to assess personal exposure. In Hong Kong, more than 70% of the population commutes through roadway and railway public transport. This study aims to determine the oxidative potential and role of aerosol carbon and water-soluble metals in fine (d p < 2.5 μm) and coarse PM (2.5 <d p <10 μm) in public transport systems including underground (UG) subway, above-ground (AG) train, and buses (BUS). Metals such as Fe, Cr, Mo, Pb, Ni, and V from UG, AG, and BUS routes exhibited much lower solubility compared with ambient PM. The cell toxicity of PM in these transport microenvironments was also analyzed in vitro and compared with urban ambient environments. Strong positive associations were observed for reactive oxygen species (ROS) with water-soluble metals (Cr, Cu, Fe, Mn, Ni, V, Mo; R > 0.70) and organic and elemental carbon (OCEC) (R > 0.85) for UG and AG routes. In addition, PM from UG and AG routes generated 3–4-fold (in PM2.5) and 40–50-fold (in coarse PM) less ROS compared to urban sites, suggesting PM in these public transport microenvironments may not be intrinsically redox active than in urban ambient, and water solubility of metals seems to have played an important role in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  • Aarnio P et al (2005) The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos Environ 39:5059–5066. doi:10.1016/J.Atmosenv.2005.05.012

    Article  CAS  Google Scholar 

  • Araujo JA (2011) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 4:79–93. doi:10.1007/s11869-010-0101-8

    Article  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241. doi:10.1080/02786829608965393

    Article  CAS  Google Scholar 

  • Boogaard H et al (2012) Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations. Environ Health Perspect 120:185–191. doi:10.1289/ehp.1103667

    Article  CAS  Google Scholar 

  • Chan LY, Lau WL, Lee SC, Chan CY (2002a) Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos Environ 36:3363–3373. doi:10.1016/S1352-2310(02)00318-7

    Article  CAS  Google Scholar 

  • Chan LY, Lau WL, Zou SC, Cao ZX, Lai SC (2002b) Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban, area of Guangzhou, China. Atmos Environ 36:5831–5840. doi:10.1016/S1352-2310(02)00687-8

    Article  CAS  Google Scholar 

  • Cheng Y et al (2015) PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18:96–104. doi:10.1016/j.partic.2013.10.003

    Article  CAS  Google Scholar 

  • Chillrud SN, Epstein D, Ross JM, Sax SN, Pederson D, Spengler JD, Kinney PL (2004) Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ Sci Technol 38:732–737. doi:10.1021/Es034734y

    Article  CAS  Google Scholar 

  • Cho AK et al (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47. doi:10.1016/J.Envres.2005.01.003

    Article  CAS  Google Scholar 

  • Donaldson K et al (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220. doi:10.1089/089426802320282338

    Article  CAS  Google Scholar 

  • Furuya K, Kudo Y, Okinaga K, Yamuki M, Takahashi S, Araki Y, Hisamatsu Y (2001) Seasonal variation and their characterization of suspended particulate matter in the air of subway stations. J Trace Microprobe T 19:469–485. doi:10.1081/Tma-100107583

    Article  CAS  Google Scholar 

  • Gali NK, Yang F, Jiang SY, Chan KL, Sun L, Ho KF, Ning Z (2015) Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals. Environ Pollut 198:86–96. doi:10.1016/j.envpol.2015.01.001

    Article  CAS  Google Scholar 

  • Ghio AJ, Stonehuerner J, Dailey LA, Carter JD (1999) Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal Toxicol 11:37–49. doi:10.1080/089583799197258

    Article  CAS  Google Scholar 

  • HKTD (2014) Travel characteristics survey. Hong Kong

  • Ho KF, Lee SC, Chan CK, Yu JC, Chow JC, Yao XH (2003) Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos Environ 37:31–39. doi:10.1016/S1352-2310(02)00804-X

    Article  CAS  Google Scholar 

  • Hu S, Polidori A, Arhami M, Shafer MM, Schauer JJ, Cho A, Sioutas C (2008) Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor. Atmos Chem Phys 8:6439–6451

    Article  CAS  Google Scholar 

  • Jia Y, Wang Q, Liu T (2017) Toxicity research of PM2.5 compositions in vitro. Int J Environ Res Public Health 14:232. doi:10.3390/ijerph14030232

    Article  Google Scholar 

  • Jiang SYN, Yang FH, Chan KL, Ning Z (2014) Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmos Pollut Res 5:236–244. doi:10.5094/Apr.2014.029

    Article  CAS  Google Scholar 

  • Kam W, Cheung K, Daher N, Sioutas C (2011a) Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos Environ 45:1506–1516. doi:10.1016/J.Atmosenv.2010.12.049

    Article  CAS  Google Scholar 

  • Kam W, Ning Z, Shafer MM, Schauer JJ, Sioutas C (2011b) Chemical characterization and redox potential of coarse and fine particulate matter (PM) in underground and ground-level rail systems of the Los Angeles Metro. Environ Sci Technol 45:6769–6776. doi:10.1021/es201195e

    Article  CAS  Google Scholar 

  • Kim CH et al (2010) A study on characteristics of atmospheric heavy metals in subway station. Toxicol Res 26:157–162. doi:10.5487/TR.2010.26.2.157

    Article  CAS  Google Scholar 

  • van Klaveren RJ, Nemery B (1999) Role of reactive oxygen species in occupational and environmental obstructive pulmonary diseases. Curr Opin Pulm Med 5:118–123

    Article  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (2000) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34:1132–1142. doi:10.1021/Es981276y

    Article  CAS  Google Scholar 

  • Lakey PS, Berkemeier T, Tong H, Arangio AM, Lucas K, Poschl U, Shiraiwa M (2016) Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep 6:32916. doi:10.1038/srep32916

    Article  CAS  Google Scholar 

  • Loxham M, Cooper MJ, Gerlofs-Nijland ME, Cassee FR, Davies DE, Palmer MR, Teagle DAH (2013) Physicochemical characterization of airborne particulate matter at a mainline underground railway station. Environ Sci Technol 47:3614–3622. doi:10.1021/es304481m

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Mugica-Alvarez V, Figueroa-Lara J, Romero-Romo M, Sepulveda-Sanchez J, Lopez-Moreno T (2012) Concentrations and properties of airborne particles in the Mexico City subway system. Atmos Environ 49:284–293. doi:10.1016/J.Atmosenv.2011.11.038

    Article  CAS  Google Scholar 

  • Murruni LG et al (2009) Concentrations and elemental composition of particulate matter in the Buenos Aires underground system. Atmos Environ 43:4577–4583. doi:10.1016/J.Atmosenv.2009.06.025

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen MJ, Gomez-Perales JE, Colvile RN (2007) Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos Environ 41:7995–8006. doi:10.1016/J.Atmosenv.2007.08.002

    Article  CAS  Google Scholar 

  • Ning Z, Geller MD, Moore KF, Sheesley R, Schauer JJ, Sioutas C (2007) Daily variation in chemical characteristics of urban ultrafine aerosols and inference of their sources. Environ Sci Technol 41:6000–6006. doi:10.1021/Es070653g

    Article  CAS  Google Scholar 

  • Ntziachristos L, Froines JR, Cho AK, Sioutas C (2007) Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Particle and Fibre Toxicology 4:5–5. doi:10.1186/1743-8977-4-5

    Article  Google Scholar 

  • Pakbin P, Ning Z, Shafer MM, Schauer JJ, Sioutas C (2011) Seasonal and spatial coarse particle elemental concentrations in the Los Angeles area. Aerosol Sci Technol 45:949–U156. doi:10.1080/02786826.2011.571309

    Article  CAS  Google Scholar 

  • Querol X et al (2012) Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos Chem Phys 12:5055–5076. doi:10.5194/Acp-12-5055-2012

    Article  CAS  Google Scholar 

  • Raut JC, Chazette P, Fortain A (2009) Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos Environ 43:860–868. doi:10.1016/J.Atmosenv.2008.10.038

    Article  CAS  Google Scholar 

  • Rees SL, Robinson AL, Khlystov A, Stanier CO, Pandis SN (2004) Mass balance closure and the federal reference method for PM2.5 in Pittsburgh. Pennsylvania Atmos Environ 38:3305–3318. doi:10.1016/J.Atmosenv.2004.03.016

    Article  CAS  Google Scholar 

  • Roy R, Jan R, Yadav S et al (2016) Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune. India Air Qual Atmos Health 9:669–680. doi:10.1007/s11869-015-0376-x

    Article  CAS  Google Scholar 

  • Sabin LD et al (2005) Characterizing the range of children’s air pollutant exposure during school bus commutes. J Expo Anal Environ Epidemiol 15:377–387. doi:10.1038/sj.jea.7500414

    Article  CAS  Google Scholar 

  • Salma I, Weidinger T, Maenhaut W (2007) Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos Environ 41:8391–8405. doi:10.1016/J.Atmosenv.2007.06.017

    Article  CAS  Google Scholar 

  • Salma I, Posfai M, Kovacs K, Kuzmann E, Homonnay Z, Posta J (2009) Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos Environ 43:3460–3466. doi:10.1016/J.Atmosenv.2009.04.042

    Article  CAS  Google Scholar 

  • Spagnolo AM, Ottria G, Perdelli F, Cristina ML (2015) Chemical characterisation of the coarse and fine particulate matter in the environment of an underground railway system: cytotoxic effects and oxidative stress-a preliminary study. Int J Environ Res Public Health 12:4031–4046. doi:10.3390/ijerph120404031

    Article  CAS  Google Scholar 

  • Steenhof M et al (2011) In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential—the RAPTES project. Particle and Fibre Toxicology 8:26. doi:10.1186/1743-8977-8-26

    Article  CAS  Google Scholar 

  • Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radical Bio Med 35:327–340. doi:10.1016/S0891-5849(03)00280-6

    Article  CAS  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Heal C 26:339–362. doi:10.1080/10590500802494538

    Article  CAS  Google Scholar 

  • Wang DB, Pakbin P, Shafer MM, Antkiewicz D, Schauer JJ, Sioutas C (2013) Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles. Atmos Environ 77:301–310. doi:10.1016/J.Atmosenv.2013.05.031

    Article  CAS  Google Scholar 

  • Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A (2004) Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 112:1347–1358

    Article  CAS  Google Scholar 

  • Yang FH et al (2015) Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos Environ 109:42–51. doi:10.1016/j.atmosenv.2015.03.009

    Article  CAS  Google Scholar 

  • Ye XJ, Lian ZW, Jiang CX, Zhou ZX, Chen HX (2010) Investigation of indoor environmental quality in Shanghai metro stations. China Environ Monit Assess 167:643–651. doi:10.1007/S10661-009-1080-9

    Article  Google Scholar 

  • Yip M, Madl P, Wiegand A, Hofmann W (2006) Exposure assessment of diesel bus emissions. Int J Environ Res Public Health 3:309–315

    Article  CAS  Google Scholar 

  • Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, Su Z (2010) Particle size affects the cellular response in macrophages. Eur J Pharm Sci: Off J Eur Federation Pharm Sci 41:650–657. doi:10.1016/j.ejps.2010.09.006

    Article  CAS  Google Scholar 

  • Zhang Z, Chau PY, Lai HK, Wong CM (2009) A review of effects of particulate matter-associated nickel and vanadium species on cardiovascular and respiratory systems. Int J Environ Health Res 19:175–185. doi:10.1080/09603120802460392

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Food and Health Bureau, Hong Kong SAR Government, for the grant of Health and Medical Research Fund (HMRF; Ref. No. 10112061). The authors would also like to acknowledge the financial support of General Research Fund (GRF Project. No. 11204115) and the Early Career Scheme (ECS Project No. 21201214) from the Research Grants Council of the Hong Kong SAR. The authors report no conflict of interest with funding sources and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Ning.

Ethics declarations

Funding

This study was funded by Research Grants Council of the Hong Kong SAR (GRF Project. No. 11204115 and ECS Project No. 21201214). Also, Food and Health Bureau, Hong Kong SAR Government funded this study (HMRF; Ref. No. 10112061).

Conflict of interest

The corresponding author Zhi NING received the above-said grants and declares no conflict of interest with funding sources and others.

Human and animal rights and informed consent

This study did not employ either human participants or animals for the experiments.

The authors declare that this manuscript is submitted solely to this journal and is not in consideration/in publication with any other journal.

Electronic supplementary material

ESM 1

(DOC 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gali, N.K., Jiang, S.Y., Yang, F. et al. Redox characteristics of size-segregated PM from different public transport microenvironments in Hong Kong. Air Qual Atmos Health 10, 833–844 (2017). https://doi.org/10.1007/s11869-017-0473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0473-0

Keywords

Navigation