Skip to main content
Log in

Chemical fractionation by sequential extraction of Cd, Pb, and Cu in Antarctic atmospheric particulate for the characterization of aerosol composition, sources, and summer evolution at Terra Nova Bay, Victoria Land

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

An Author Correction to this article was published on 10 April 2018

This article has been updated

Abstract

Insights in the knowledge of the Antarctic atmospheric composition of Cd, Pb, and Cu are obtained by chemical fractionation of metals in the aerosol to obtain water-soluble (soluble), dilute HCl-extractable (extractable), and inert fractions. The aim is to correlate chemical fractions to metal sources. A three-step sequential extraction and square wave anodic stripping voltammetry were applied to analyze aerosol samples (PM10) collected during summer near the “M. Zucchelli” Italian Station (Victoria Land). Metal mass fractions varied as follows (min–max, average, in μg g−1): Cd 1.4–38 (11), Pb 26–83 (47), and Cu 150–840 (490). In terms of atmospheric concentrations, the values were as follows (pg m−3): Cd 0.93–39 (9.5), Pb 17–60 (33), and Cu 88–480 (340). The soluble fraction relates to the marine contribution. The extractable fraction refers mainly to local human activity. The inert fraction is associated with the crustal dust. Soluble, extractable, and inert metal fractions changed very much during the Austral summer according to changes of source types and strengths. The observations on the temporal trends, the relationships with wind direction and speed, and the correlations between the same fractions of different metals, together with results of principal component analysis, agreed with the stated associations between chemical fractions and major sources. Fractionated data are among the first even published in Antarctic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 10 April 2018

    The original publication contained the following errors.

References

  • Annibaldi A, Truzzi C, Illuminati S, Scarponi G (2007) Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land). Anal Bioanal Chem 387:977–988

    Article  CAS  Google Scholar 

  • Annibaldi A, Truzzi C, Illuminati S, Scarponi G (2009) Recent sudden decrease of lead in Adriatic coastal seawater during the years 2000–2004 in parallel with the phasing out of leaded gasoline in Italy. Mar Chem 113:238–249

    Article  CAS  Google Scholar 

  • Annibaldi A, Truzzi C, Illuminati S, Scarponi G (2011) Direct gravimetric determination of aerosol mass concentration in central Antarctica. Anal Chem 83:143–151

    Article  CAS  Google Scholar 

  • Arimoto R, Schloesslin C, Davis D, Hogan A, Grube P, Fitzgerald W, Lamborg C (2004) Lead and mercury in aerosol particles collected over the South Pole during ISCAT-2000. Atmos Environ 38:5485–5491

    Article  CAS  Google Scholar 

  • Arimoto R, Zeng T, Davis D, Wang Y, Khaing H, Nesbit C, Huey G (2008) Concentrations and sources of aerosol ions and trace elements during ANTCI-2003. Atmos Environ 42:2864–2876

    Article  CAS  Google Scholar 

  • Armienti P, Tripodo A (1991) Petrography and chemistry of lavas and comagmatic xenoliths of Mt. Rittmann, a volcano discovered during the IV Italian Expedition in Northern Victoria Land (Antarctica). Mem Soc Geol It 46:427–451

    Google Scholar 

  • Artaxo P, Rabello MLC, Maenhaut W, van Grieken R (1992) Trace elements and individual particle analysis of atmospheric aerosols from the Antarctic peninsula. Tellus B 44B:318–334

    Article  CAS  Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    Article  CAS  Google Scholar 

  • Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F (1998) Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biol 19:316–322

    Article  Google Scholar 

  • Bargagli R, Borghini F, Celesti C (2000) Elemental composition of the lichen Umbilicaria decussata. Ital J Zool 1(Supplement):157–162

    Article  Google Scholar 

  • Bargagli R, Skotnicki ML, Marri L, Pepi M, Mackenzie A, Agnorelli C (2004) Polar Biol 27:423–431

    Article  Google Scholar 

  • Bazzano A, Soggia F, Grotti M (2015) Source identification of atmospheric particle-bound metals at Terra Nova Bay, Antarctica. Environ Chem 12:245–252

    Article  CAS  Google Scholar 

  • Bonaccorso A, Maione M, Pertusati PC, Privitera E, Ricci CA (1991) Fumarolic activity at Mt. Rittmann volcano (Northern Victoria Land, Antarctica). Mem Soc Geol It 46:453–456

    Google Scholar 

  • Canepari S, Cardarelli E, Giuliano A, Pietrodangelo A (2006) Deterimination of metals, metalloids and non-volatile ions in airborne particulate matter by a new two-step sequential leaching procedure part a: experimental design and optimisation. Talanta 69:581–587

    Article  CAS  Google Scholar 

  • Canepari S, Astolfi ML, Moretti S, Curini R (2010) Comparison of extracting solutions for elemental fractionation in airborne particulate matter. Talanta 82:834–844

    Article  CAS  Google Scholar 

  • Capodaglio G, Scarponi G, Toscano G, Cescon P (1991) Cadmium complexation in surface seawater of Terra Nova Bay (Antarctica). Ann Chim 81:279–296

    CAS  Google Scholar 

  • Capodaglio G, Turetta G, Toscano G, Gambaro A, Scarponi G, Cescon P (1998) Cadmium, lead and copper complexation in Antarctic coastal seawater. Evolution during the austral summer. Int J Environ Anal Chem 71:195–226

    Article  CAS  Google Scholar 

  • Chavent M, Guégan H, Kuentz V, Patouille B, Saracco J (2009) PCA- and PMF-based methodology for air pollution sources identification and apportionment. Environmetrics 20:928–942

    CAS  Google Scholar 

  • Chen LQ, Yu Q, Yang XL (1994) A study of aerosol chemistry in the atmosphere over oceans part III: forms and air-sea fluxes of metal. Sci Atmos Sinica 18:215–223

    Google Scholar 

  • Cunningham WC, Zoller WH (1981) The chemical composition of remote area aerosols. J Aerosol Sci 12:367–384

    Article  CAS  Google Scholar 

  • Dabek-Zlotorzynska E, Kelly M, Chen H, Chakrabarti CL (2003) Evaluation of capillary electrophoresis combined with a BRC sequential extraction for determining distribution of Fe, Zn, Cu, Mn and Cd in airborne particulate matter. Anal Chim Acta 498:175–197

    Article  CAS  Google Scholar 

  • Dabek-Zlotorzynska E, Meghan K, Chen H, Chakrabarti CL (2005) Application of capillary electrophoresis combined with a modified BCR sequential extraction for estimating of distribution of selected trace metals in PM2.5 fractions of urban airborne particulate matter. Chemosphere 58:135–137

    Article  CAS  Google Scholar 

  • Dalla Riva S, Abelmoschi ML, Chiantore M, Grotti M, Magi E, Soggia F (2003) Biogeochemical cycling of Pb in the coastal marine environment at Terra Nova Bay, Ross Sea. Antarct Sci 15:425–432

    Article  Google Scholar 

  • Dick AL (1991) Concentrations and sources of metals in the Antartic Peninsula aerosol. Geochim Cosmochim Acta 55:1827–1836

    Article  CAS  Google Scholar 

  • Dick AL, Peel DA (1985) Trace elements in Antarctic air and snowfall. Ann Glaciol 7:12–19

    Article  CAS  Google Scholar 

  • Farao C, Canepari S, Perrino C, Harrison RM (2014) Sources of PM in an industrial area: comparison between receptor model results and semiempirical calculations of source contributions. Aerosol Air Qual Res 14:1558–1572

    Article  CAS  Google Scholar 

  • Fernández-Espinosa AJ, Ternero-Rodríguez M (2004) Study of traffic pollution by metals in Seville (Spain) by physical and chemical speciation methods. Anal Bioanal Chem 379:684–699

    Article  CAS  Google Scholar 

  • Frache R, Abelmoschi ML, Grotti M, Ianni C, Magi E, Soggia F, Capodaglio G, Turetta C, Barbante C (2001) Effects of ice melting on Cu, Cd and Pb profiles in Ross Sea waters (Antarctica). Int J Environ Anal Chem 79:301–313

    Article  CAS  Google Scholar 

  • Funasaka K, Tojo T, Kaneco S, Takaoka M (2013) Different chemical properties of lead in atmospheric particles from urban roadside and residential areas. Atmos Pollut Res 4:362–369

    Article  CAS  Google Scholar 

  • Fung YS, Tung HS (1999) Capillary electrophoresis for trace metal ion analysis in environmental studies. Electrophoresis 20:1832–1841

    Article  CAS  Google Scholar 

  • Gabriel K (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Article  Google Scholar 

  • Hong S, Kim Y, Boutron CF, Ferrari CP, Petit JR, Barbante C, Rosman K, Lipenkov VY (2003) Climate-related variations in lead concentrations and sources in Vostok Antarctic ice from 65,000 to 240,000 years BP. Geophys Res Lett 30:ASC 3-1–ASC 3-5

    Article  CAS  Google Scholar 

  • Huang ZQ, Ji WD, Tang RK, Huang RT, Yang XL, Yu T, Zhang GX (2003a) Chemical composition of marine aerosol in Western Pacific East Indian Ocean Southern Ocean and Prydz Bay and its source discrimination. J Oceanogr Taiwan Strait 22:505–517

    Google Scholar 

  • Huang ZQ, Ji WD, Yang XL (2003b) The chemical composition of aerosol over Zhongshan Station in Antarctica and its sources discrimination. J Oceanogr Taiwan Strait 22:334–346

    Google Scholar 

  • Huang ZQ, Ji WD, Yang XL, Huang RT, Tang RK, Yu T, Zhang GX (2005) The chemical composition of marine aerosol over Zhongshan Station in Antarctica and its sources discrimination in 1998. Acta Oceanol Sinica 27:59–66

    Google Scholar 

  • Illuminati S, Truzzi C, Annibaldi A, Migliarini B, Carnevali O, Scarponi G (2010) Cadmium bioaccumulation and metallothionein induction in the liver of the Antarctic teleost Trematomus bernacchii during an on-site short-term exposure to the metal via seawater. Toxicol Environ Chem 92:617–640

    Article  CAS  Google Scholar 

  • Illuminati S, Annibaldi A, Truzzi C, Finale C, Scarponi G (2013) Square-wave anodic-stripping voltammetric determination of Cd, Pb and Cu in wine: set-up and optimization of sample pre-treatment and instrumental parameters. Electrochim Acta 104:148–161

    Article  CAS  Google Scholar 

  • Illuminati S, Annibaldi A, Truzzi C, Libani G, Mantini C, Scarponi G (2015) Determination of water-soluble, acid-extractable and inert fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry after sequential extraction and microwave digestion. J Electroanal Chem 755:182–196

    Article  CAS  Google Scholar 

  • Illuminati S, Bau S, Annibaldi A, Mantini C, Libani G, Truzzi C, Scarponi G (2016) Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land. Atmos Environ 125:212–221

    Article  CAS  Google Scholar 

  • Karthikeyan S, Joshi UM, Balasubramanian R (2006) Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Anal Chim Acta 576:23–30

    Article  CAS  Google Scholar 

  • Khandekar RN, Tripathi RM, Raghunath R, Sathe AP, Nambi KSV (1992) Heavy metal concentrations in air, water and rock samples at Antarctica during 1989-1990. Current Sci 63:201–204

    CAS  Google Scholar 

  • Kyotani T, Iwatsuki M (1998) Determination of water and acid soluble components in atmospheric dust by inductively coupled plasma atomic emission spectrometry. Ion Chromatography and Ion-Selective Electrode method Anal Sci 14:741–748

    CAS  Google Scholar 

  • Kyotani T, Iwatsuki M (2002) Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Atmos Environ 36:639–649

    Article  CAS  Google Scholar 

  • Lum KR, Betteridge JS, Macdonald RR (1982) The potential availability of P, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in urban particulate matter. Environ Technol Lett 3:57–62

    Article  CAS  Google Scholar 

  • Maenhaut W, Zoller WH (1977) Determination of the chemical composition of the South Pole aerosol by instrumental neutron activation analysis. J Radioanal Chem 37:637–650

    Article  CAS  Google Scholar 

  • Maenhaut W, Zoller WH, Duce RA, Hoffman GL (1979) Concentration and size distribution of particulate trace elements in the south polar atmosphere. J Geophys Res 84:2421–2431

    Article  CAS  Google Scholar 

  • Mazzera DM, Lowenthal DH, Chow JC, Watson JG, Grubisic V (2001) PM10 measurements at McMurdo Station, Antarctica. Atmos Environ 35:1891–1902

    Article  CAS  Google Scholar 

  • Mishra VK, Kim KH, Hong S, Lee K (2004) Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmos Environ 38:4069–4084

    Article  CAS  Google Scholar 

  • Ndamitso MM, Abdulkadir A, Abulude FO (2016) Total atmospheric deposit source apportionment: a review. Environ Skeptics Crit 5:63–78

    Google Scholar 

  • NIST (1998) National Institute of Standards and Technology, Standard Reference Material (SRM) 1648 for urban particulate matter, NIST, Gaithersburg, MD, USA

  • NIST (2012) National Institute of Standards and Technology. Standard Reference Material (SRM) 1648a for urban particulate matter, NIST, Gaithersburg, MD, USA

  • Peel DA, Wolff EW (1982) Recent variations in heavy metal concentrations in firn and air from the Antarctic Peninsula. Ann Glaciol 3:255–259

    Article  CAS  Google Scholar 

  • PNRA-ENEA, (2016) Meteo-climatological observatory of the Italian National Antarctic Research Programme (PNRA), Eneide meteo station. Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Rome, Italy. Avaible online at: http://www.climantartide.it, (last access February 14, 2017)

  • Pongratz R, Heumann KG (1996) Determination of monomethylcadmium in the environment by differential pulse anodic stripping voltammetry. Anal Chem 68:1262–1266

    Article  CAS  Google Scholar 

  • Rädlein N, Heumann KG (1992) Trace analysis of heavy metals in aerosols over the Atlantic Ocean from Antarctica to Europe. Int J Environ Anal Chem 48:127–150

    Article  Google Scholar 

  • Rädlein N, Heumann KG (1995) Size fractionated impactor sampling of aerosol particles over the Atlantic Ocean from Europe to Antarctica as a methodology for source identification of Cd, Pb, Tl, Ni, Cr, and Fe. Fresenius J Anal Chem 352:748–755

    Article  Google Scholar 

  • Rolph GD (2016) Real-time Environmental Applications and Display sYstem (READY) Website (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park, MD, USA

  • Scarponi G, Capodaglio G, Toscano G, Barbante C, Cescon P (1995) Speciation of lead and cadmium in Antarctic seawater: comparison with areas subject to different anthropic influence. Microchem J 51:214–230

    Article  CAS  Google Scholar 

  • Scarponi G, Capodaglio G, Turetta C, Barbante C, Cecchini M, Toscano G, Cescon P (1997) Evolution of cadmium and lead contents in Antarctic coastal seawater during the austral summer. Intern J Environ Anal Chem 66:23–49

    Article  CAS  Google Scholar 

  • Smichovski P, Polla G, Gómez D (2005) Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review. Anal Bioanal Chem 381:302–316

    Article  CAS  Google Scholar 

  • Solomon PA, Costantini M, Grahame TJ, Gerlofs-Nijland M, Cassee FR, Russell AG, Brook JR, Hopke PK, Hidy G, Phalen RF, Saldiva P, Sarnat SE, Balmes JR, Tager IB, Özkaynak H, Vedal S, Wierman SSG, Costa DL (2012) Air pollution and health: bridging the gap from sources to health outcomes: conference summary. Air Qual Atmos Health 5:9–62

    Article  CAS  Google Scholar 

  • Stein AF, Draxel RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077

    Article  Google Scholar 

  • Sturgeon RE, Francesconi KA (2009) Enhancing reliability of elemental speciation results—quo vadis? Environ Chem 6:294–297

    Article  CAS  Google Scholar 

  • Taiwo AM, Harrison RM, Shi Z (2014) A review of receptor modelling of industrially emitted particulate. Atmosph Environ 97:109–120

    Article  CAS  Google Scholar 

  • Toscano G, Gambaro A, Moret I, Capodaglio G, Turetta C, Cescon P (2005) Trace metals in aerosol at Terra Nova Bay, Antarctica. J Environ Monit 7:1275–1280

    Article  CAS  Google Scholar 

  • Truzzi C, Lambertucci L, Gambini G, Scarponi G (2002) Optimization of square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Cd, Pb, and Cu in seawater and comparison with differential pulse anodic stripping voltammetry (DPASV). Ann Chim 92:313–326

    CAS  Google Scholar 

  • Truzzi C, Lambertucci L, Illuminati S, Annibaldi A, Scarponi G (2005) Direct gravimetric measurements of the mass of the Antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay. Ann Chim 95:867–876

    Article  CAS  Google Scholar 

  • Truzzi C, Annibaldi A, Illuminati S, Bassotti E, Scarponi G (2008) Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica). Anal Bioanal Chem 392:247–262

    Article  CAS  Google Scholar 

  • Tuncel G, Aras NK, Zoller WH (1989) Temporal variations and sources of elements in the South Pole atmosphere: 1. Nonenriched and moderately enriched elements. J Geophys Res Atmos 94:13025–13038

    Article  CAS  Google Scholar 

  • Völkening J, Baumann H, Heumann KG (1988) Atmospheric distribution of particulate lead over the Atlantic Ocean from Europe to Antarctica. Atmos Environ 22:1169–1174

    Article  Google Scholar 

  • Wagenbach D, Görlach U, Moser K, Münnich KO (1988) Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content. Tellus B 44B:426–436

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Counce D (2008) Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps. J Volcanol Geoth Res 177:734–742

    Article  CAS  Google Scholar 

  • Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Article  Google Scholar 

  • Xu G, Gao Y (2014) Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica. Polar Res 33:23973–23988

    Article  CAS  Google Scholar 

  • Zhao S, Chen L, Lin H (2015) Characteristics of trace metals in marine aerosols and their source identification over the Southern Ocean. Adv Polar Sci 26:203–214

    Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the south pole. Science 183:198–200

    Article  CAS  Google Scholar 

  • Zreda-Gostynska G, Kyle PR (1997) Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. J Geophys Res 102:15039–15055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Italian Programma Nazionale di Ricerche in Antartide (PNRA, Grants PdR 2004/9.01, 2009/A2.11, 2013/AZ 3.04) under the projects on “Chemical Contamination”, “Study of sources and transfer processes of the Antarctic aerosol”, and “Air-snow exchanges and relationships for trace elements and organic compounds of climatic interest” is gratefully acknowledged. Many thanks are due to the technical personnel of Ente Nazionale Energia e Ambiente (ENEA) at Terra Nova Bay and to the scientists of the Antarctic expedition for the sampling activities on site. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.ready.noaa.gov) used in this publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Annibaldi or S. Illuminati.

Additional information

Highlights

•Chemical fractionation of metals used to characterize Antarctic aerosol composition.

•Trace metal fractionation by a three-step sequential extraction and SWASV analysis.

•Soluble, extractable, and inert metal fractions change very much in Austral summer.

•Different fractions of Cd, Pb, and Cu are related to different aerosol sources.

•PCA helps describe fractionation-source relationship and summer evolution.

Electronic supplementary material

ESM 1

(DOCX 4993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truzzi, C., Annibaldi, A., Illuminati, S. et al. Chemical fractionation by sequential extraction of Cd, Pb, and Cu in Antarctic atmospheric particulate for the characterization of aerosol composition, sources, and summer evolution at Terra Nova Bay, Victoria Land. Air Qual Atmos Health 10, 783–798 (2017). https://doi.org/10.1007/s11869-017-0470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0470-3

Keywords

Navigation