Skip to main content
Log in

Inorganic chemical composition of dust deposited on oleander (Nerium oleander L.) leaves

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Elemental composition of dust deposited onto leaf surfaces was analysed in this study. Leaves of oleander (Nerium oleander L.) were collected for testing the environmental quality from Tripoli (Libya), Tajura (suburban of Tripoli) and Ghadames (remote area). Elemental analysis was carried out by ICP-OES. Principle component analysis (PCA) and enrichment factors were used for characterizing and estimating the level of the pollution. Samples from Tripoli were found to have higher contents of Pb, Zn, Cu in comparison with suburban (Tajura) and remote (Ghadames) areas. Our results demonstrated that the leaves of Nerium oleander were useful indicator to assessment of atmospheric deposition. Only limited information is available on environmental issues in Libya and the results reported here may contribute significantly to the assessment of the quality of the environment in this country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abed AM, Kuisi MA, Khair HA (2009) Characterization of the Khamaseen (spring) dust in Jordan. Atmos Environ 43:2868–2876

    Article  CAS  Google Scholar 

  • Adetunji MT, Martins O, Arowolo TA (2001) Seasonal variation in atmospheric deposition of nitrate, sulphate, lead, zinc, and copper in southwestern Nigeria. Commun Soil Sci Plan 32:65–73

    Article  CAS  Google Scholar 

  • Aksoy A, Öztürk MA (1997) Nerium oleander, L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci Total Environ 205:145–150

    Article  CAS  Google Scholar 

  • Alfani A, Bartoli G, Rutigliano FA, Maisto G, Virzo De Santo A (1996) Trace metal biomonitoring in the soil and the leaves of Quercus ilex in the urban area of Naples. Biol Trace Elem Res 51:117–131

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2007) The investigation of metal concentration in street dust samples in Aquaba city, Jordan. Environ Geochem Health 29:197–207

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2011) Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ 38:6803–6812

    Article  Google Scholar 

  • Al-Khashman OA, Al-Muhtaseb AH, Ibrahim KA (2011) Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environ Pollut 159:1635–1640

  • Al-Khlaifat AL, Al-Khashman OA (2007) Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos Environ 41:8891–8897

    Article  CAS  Google Scholar 

  • Bache CA, Gutenmann WH, Rutzke M, Chu G, Elfwing DC, Lisk DJ (1991) Concentrations of metals in grasses in the vicinity of a municipal refuse incinerator. Arch Environ Contam Toxicol 20:538–542

    Article  CAS  Google Scholar 

  • Baranyai E, Simon E, Braun M, Tóthmérész B, Posta J, Fábián I (2015) The effect of a fireworks event on the amount and elemental concentration of deposited dust collected in the city of Debrecen, Hungary. Air Qual Atmos Health 8:359–365

    Article  Google Scholar 

  • Breuning-Madsen H, Awadzi TW (2005) Harmattan dust deposition and particle size in Ghana. Catena 63:23–38

    Article  CAS  Google Scholar 

  • Bu-Olayan AH, Thomas BV (2002) Bio-monitoring studies on the effect of lead in date palm (Phoenix dactylifera) in arid ecosystem of Kuwait. J Arid Environ 51:133–139

    Article  Google Scholar 

  • Chen TB, Wong WJC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soil of Hong Kong. Environ Pollut 96:61–68

    Article  CAS  Google Scholar 

  • Chester R, Stoner JH (1973) Pb in particulates from the lower atmosphere of the eastern Atlantic. Nature 245:27–28

    Article  CAS  Google Scholar 

  • Davis PH (1978) Flora of Turkey and the East Aegean Islands, vol. 6., Edinburgh University Press, p 159–160

  • Divrikli V, Soylak M, Elic L, Dogan M (2003) Trace heavy metal levels in street dust samples from Yazgat city center, Turkey. J Trace Microprobe Tech 21:351–361

    Article  CAS  Google Scholar 

  • El Hinshery AK, Kumar NS (1992) Lead levels in settled dusts of Tripoli, Libya. Sci Total Environ 119:51–56

    Article  Google Scholar 

  • Elgrni MM, Shahad HAK, Sadiq Al-Baghdadi MAR, El Hinshiri A, Abdol-Hamid HR, El Tamzini M (2007) Ethanol as a lead/MTBE replacement for spark ignition engines in Libya. Ovidius Univ Ann Chem 18:22–30

    CAS  Google Scholar 

  • Grousset F, Biscaye PE (2005) Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem Geol 222:149–167

    Article  CAS  Google Scholar 

  • Herut B, Nimmo M, Medway A, Chester R, Krom MD (2001) Dry atmospheric inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean): sources and fluxes. Atmos Environ 35:803–813

    Article  CAS  Google Scholar 

  • Khairy MA, Barakat AO, Mostafa AR, Wade TL (2011) Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchem J 97:234–242

    Article  CAS  Google Scholar 

  • Kubilay N, Saydam AC (2001) Trace elements in atmospheric particulates over the eastern Mediterranean: concentrations, sources and temporal variability. Atmos Environ 29:2289–2300

    Article  Google Scholar 

  • Little P, Martin ME (1972) A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environ Pollut 3:241–256

    Article  CAS  Google Scholar 

  • Lovei M (1998) Phasing out lead from gasoline, World Bank Technical Paper No. 397., Pollution Management Series. , The World Bank Washington, D.C

  • Margitai Z, Braun M (2002) Air quality assessment via discriminant analysis of element composition data on dust collected from tree leaves. (In Hungarian) Magyar Kémiai Folyóirat 11:38–41

    Google Scholar 

  • Mason B (1966) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • McTanish G, Nickling WG, Lynch AW (1997) Dust deposition and particle size in Mali. Catena 29:307–322

    Article  Google Scholar 

  • McTanish G, Walker PH (1982) Nature and distribution of Harmattan dust. Z Geomorphol 26:417–435

    Google Scholar 

  • Meza-Figueroa D, De la O-Villanueva M, De la Parra ML (2007) Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ 41:276–288

    Article  CAS  Google Scholar 

  • Moberg JP, Esu IE, Malgwi WB (1991) Characteristics and constituent composition of Harmattan dust falling in Northern Nigeria. Geoderma 48:73–81

    Article  Google Scholar 

  • Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Elvira J, Gibbons W (2006) Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65:261–270

    Article  CAS  Google Scholar 

  • NASA (2006) http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=6313&eocn=image&eoci=morenh

  • Norušis MJ (1990) SPSS/PC+ Advanced Statistics 4.0 for the IBM PC/XT/AT and PS/2. SPSS Inc., Chicago

  • O’Hara SL, Clarke ML, Elatrash MS (2006) Field measurements of desert dust deposition in Libya. Atmos Environ 40:3881–3897

    Article  Google Scholar 

  • Osma E, Eleveren M, Karakoyun G (2016) Heavy metal accumulation affects growth of Scots pine by causing oxidative damage. Air Qual Atmos Health. doi:10.1007/s11869-016-0410-7

    Google Scholar 

  • Rai PK, Panda LLS (2014) Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: an Indo-Burma hot spot region. Air Qual Atmos Health 7:93–101

    Article  CAS  Google Scholar 

  • Scheuvens D, Kandler K, Schütz L, Ebert M, Weinbruch S (2009) XRD data of Saharan and Sahelian dusts and soils—a compilation. Goldschmidtkonferenz, Davos

    Google Scholar 

  • Seaward MRD, Mashour AM (1991) Oleander (Nerium oleander L.) as a monitor of heavy metal pollution. In: Ozturk MA, Erdem U, Gork G (eds) Urban ecology. Ege University Press, Izmir, pp. 48–61

    Google Scholar 

  • Shams ZI, Ali Beg MA (2000) Lead in particulate deposits and in leaves of roadside plants, Karachi, Pakistan. Environmentalist 20:63–67

    Article  Google Scholar 

  • Sharifi MR, Gibbson AC, Rundel PW (1997) Surface dust impacts on gas ex-change in Mojave Desert shrubs. J Appl Ecol 34:837–846

    Article  Google Scholar 

  • Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159:1229–1233

    Article  CAS  Google Scholar 

  • Stoorvogel JJ, van Bremen N, Janssen BH (1997) The nutrient input by Harmattan dust to a forest ecosystem in Côte d’Ivoire, Africa. Biogeochemistry 37:145–157

    Article  CAS  Google Scholar 

  • Tanner PA, Ma HL, Yu PKN (2008) Fingerprinting metals in urban street dust of Beijing, shanghai, and Hong Kong. Environ Sci Technol 42:7111–7117

    Article  CAS  Google Scholar 

  • Tiessen H, Hauffe HK, Mermut AR (1991) Deposition of Harmattan dust and its influence on base saturation of soils in northern Ghana. Geoderma 49:285–299

    Article  CAS  Google Scholar 

  • Tingley DT (1989) Biologic markers of air—pollution stress and damage in forest. National Academy Press, Washington, D.C.

    Google Scholar 

  • van Heerden PDR, Krüger GHJ, Louw MK (2007) Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocaerpum, during and after foliar deposition of limestone dust. Environ Pollut 146:34–45

    Article  Google Scholar 

  • Vanderstraeten P, Lénelle Y, Meurrens A, Carati D, Brenig L, Delcloo A, Offer ZY, Zaady E (2008) Dust storm originate from Sahara covering Western Europe: a case study. Atmos Environ 42:5489–5493

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim et Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Zar IH (1996) Biostatistical analysis. Prentice Hall, N.J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Simon.

Electronic supplementary material

Table S1

ANOVA of elemental concentration of dust (mg kg−1, dry weight). (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margitai, Z., Simon, E., Fábián, I. et al. Inorganic chemical composition of dust deposited on oleander (Nerium oleander L.) leaves. Air Qual Atmos Health 10, 339–347 (2017). https://doi.org/10.1007/s11869-016-0416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0416-1

Keywords

Navigation