Air Quality, Atmosphere & Health

, Volume 10, Issue 1, pp 69–84 | Cite as

Sources of trace metals in PM10 from a petrochemical industrial complex in Northern Mexico

  • P. F. Rodriguez-Espinosa
  • R. M. Flores-Rangel
  • V. Mugica-Alvarez
  • S. S. Morales-Garcia


Concentrations, sources, and relative contributions of Cd, Cr, Cu, Fe, Mn, Pb, Ni, Ti, V, and Zn observed in PM10 in the petrochemical industrial zone of Altamira in Northern Mexico are reported for the first time. Results show that oil refining, alloys, fertilizer, mining, metallurgical processes, and steel production industries are important contributions to PM10 and metal concentrations. PM10 concentrations ranged from 21 to 92 μg m−3 and exceeded the revised 24-h average Mexican standard NOM-025-SSA1-2014 of 75 μg m−3 12 % of the study period. The highest metal concentrations were Fe (1.64 μg m−3), Mn (0.57 μg m−3), and Ti (0.29 μg m−3) and were associated with two dominant wind directions. Ti and Fe were associated with NNW winds (natural sources), and Mn and Fe were associated with SSW winds (ferromanganese industry). An average V/Ni ratio of 8.5 was found in this study with highest ratios associated to two dominant wind directions, NNW-NW and SE-SSE, suggesting origins from a fuel oil thermoelectric power plant and a refinery fuel oil, respectively. Pb was associated with industrial activity and never exceeded the Mexican standard of 1.5 μg m−3 in 24 h. Zn and Cd were correlated with a dominant easterly wind, suggesting the presence of vehicle exhaust pollutants. The study of the size and shape of PM10 particles by scanning electronic microscopy and energy-dispersive spectroscopy (SEM-EDS) allowed us to confirm the presence of trace metals associated to natural soils and clays, combustion, and industrial processes. The results presented here constitute the first efforts to evaluate toxic metals in a heavily industrialized area in Mexico and can be used to develop air quality management programs.


Altamira Crustal enrichment factors ICP-OES México PM10 Principal component analysis Trace metals 



The authors wish to thank the staff of the Laboratorio Ambiental de Cd. Victoria de la Subsecretaría de Medio Ambiente, Tamaulipas, México for their logistical support, PM10 sampling equipment, and filters provided to the project; Dirección de Desarrollo Urbano y Medio Ambiente del Municipio de Altamira for logistical support to the project; The National Polytechnic Institute (Instituto Politécnico Nacional, IPN) through the Center for Research in Advanced Science and Applied Technology, Altamira (Centro de Investigación en Ciencia Avanzada y Tecnología Aplicada, Unidad Altamira) for providing sampling site location; and Departamento de Química Aplicada Universidad Autonoma Metropolitana-Azcapotzalco for technical support. Comision de operacion y fomento de actividades (COFAA-IPN) and Sistema para estímulos al desempeño de los investigadores (EDI-IPN) are also acknowledged for their support through SIP Projects IPN 20071703 and IPN 20090610. The authors thank two anonymous reviewers for their constructive comments which helped improve the overall quality of the manuscript.

Supplementary material

11869_2016_409_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. Adachi A, Asai K, Koyama Y, Matsumoto Y, Kobayashi T (1998) Vanadium content of cigarettes. Bull Environ Contam Toxicol 61:276–280. doi: 10.1007/s001289900759 CrossRefGoogle Scholar
  2. Aldape F, Flores MJ, Díaz RV, Hernández-Méndez B, Montoya ZJM, Blanco EE, Fuentes AF, Torres-Martínez LM (1999) PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey. Nucl Instrum Methods Phys Res, Sect B 150:439–444. doi: 10.1016/S0168-583X(98)01046-5 CrossRefGoogle Scholar
  3. Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo J-C (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96:612–625. doi: 10.1016/j.atmosres.2010.02.008 CrossRefGoogle Scholar
  4. Allen AG, Nemitz E, Shi JP, Harrison RM, Greenwood JC (2001) Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos Environ 35:4581–4591. doi: 10.1016/S1352-2310(01)00190-X CrossRefGoogle Scholar
  5. Amato F, Pandolfi M, Moreno T, Furger M, Pey J, Alastuey A, Bukowiecki N, Prevot A, Baltensperger U, Querol X (2011) Sources and variability of inhalable road dust particles in three European cities. Atmos Environ 45:6777–6787. doi: 10.1016/j.atmosenv.2011.06.003 CrossRefGoogle Scholar
  6. Baeza-Squiban A, Bonvallot V, Boland S, Marano F (1999) Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol Toxicol 15:375–380. doi: 10.1023/a:1007653900063 CrossRefGoogle Scholar
  7. Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038. doi: 10.1016/j.atmosenv.2004.02.042 CrossRefGoogle Scholar
  8. Bilos C, Colombo JC, Skorupka CN, Rodriguez Presa MJ (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111:149–158. doi: 10.1016/S0269-7491(99)00328-0 CrossRefGoogle Scholar
  9. Cesari D, Genga A, Ielpo P, Siciliano M, Mascolo G, Grasso FM, Contini D (2014) Source apportionment of PM2.5 in the harbour–industrial area of Brindisi (Italy): identification and estimation of the contribution of in-port ship emissions. Sci Total Environ 497–498:392–400. doi: 10.1016/j.scitotenv.2014.08.007 CrossRefGoogle Scholar
  10. Costa CJ, Marques AP, Freitas MC, Reis MA, Oliveira OR (2002) A comparative study for results obtained using biomonitors and PM10 collectors in Sado Estuary. Environ Pollut 120:97–106. doi: 10.1016/S0269-7491(02)00132-X CrossRefGoogle Scholar
  11. Cozzi F, Adami G, Barbieri P, Reisenhofer E, Apostoli P, Bovenzi M (2010) Toxic elements content in PM10 samples from a coastal area of the Northern Adriatic Sea. Cent Eur J Chem 8:1014–1026. doi: 10.2478/s11532-010-0074-3 Google Scholar
  12. de Romaña DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25:3–13. doi: 10.1016/j.jtemb.2010.11.004 CrossRefGoogle Scholar
  13. de Winter JCF, Dodou D, Wieringa PA (2009) Exploratory factor analysis with small sample sizes. Multivariate Beh Res 44:147–181. doi: 10.1080/00273170902794206 CrossRefGoogle Scholar
  14. Deka P, Hoque RR (2014) Diwali fireworks: early signs of impact on PM10 properties of rural Brahmaputra Valley. Aerosol Air Qual Res 14:1752–1762. doi: 10.4209/aaqr.2013.09.0287 Google Scholar
  15. Diario Oficial de la Federacion (DOF) (2014) Modified Mexican air quality standard NOM-025-SSA1-2014 for PM10 and PM2.5 suspended in the air.
  16. Fang G-C, Chang C-N, Wu Y-S, Fu PP-C, Yang IL, Chen M-H (2004) Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci Total Environ 327:135–146. doi: 10.1016/j.scitotenv.2003.10.016 CrossRefGoogle Scholar
  17. Flores-Rangel RM, Rodríguez-Espinosa PF, de Oca-Valero JAM, Mugica-Alvarez V, Ortiz-Romero-Vargas ME, Navarrete-Lopez M, Dorantes-Rosales HJ (2007) Metal content in Air samples collected in an urban zone in Tampico, México: a first survey. Hum Ecol Risk Assess 13:1359–1372. doi: 10.1080/10807030701655608 CrossRefGoogle Scholar
  18. Flores-Rangel RM, Rodríguez-Espinosa PF, de Oca-Valero JAM, Mugica-Álvarez V, Ortiz-Romero-Vargas ME, Navarrete-López M, Dorantes-Rosales HJ, Morales-García SS (2014) Temporal variation of PM10 and metal concentrations in Tampico, Mexico. Air Qual Atmos Health 8:367–378. doi: 10.1007/s11869-014-0291-6 CrossRefGoogle Scholar
  19. Funasaka K, Sakai M, Shinya M, Miyazaki T, Kamiura T, Kaneco S, Ohta K, Fujita T (2003) Size distributions and characteristics of atmospheric inorganic particles by regional comparative study in Urban Osaka, Japan. Atmos Environ 37:4597–4605. doi: 10.1016/j.atmosenv.2003.08.004 CrossRefGoogle Scholar
  20. Geiger A, Cooper J (2010) Overview of airborne metals, regulations, exposure limits, health effects, and contemporary research. US Environmental Protection Agency. Accessed Accessed on August 25, 2015
  21. Godoy MLD, Godoy JM, Artaxo P (2005) Aerosol source apportionment around a large coal fired power plant—thermoelectric complex Jorge Lacerda, Santa Catarina, Brazil. Atmos Environ 39:5307–5324CrossRefGoogle Scholar
  22. Harrison RM, Jones M (1995) The chemical composition of airborne particles in the UK atmosphere. Sci Total Environ 168:195–214. doi: 10.1016/0048-9697(95)04536-A CrossRefGoogle Scholar
  23. Henson RK, Roberts JK (2006) Use of exploratory factor analysis in published research: common errors and some comment on improved practice. Educ Psychol Meas 66:393–416. doi: 10.1177/0013164405282485 CrossRefGoogle Scholar
  24. Horvath H, Kasaharat M, Pesava P (1996) The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J Aerosol Sci 27:417–435. doi: 10.1016/0021-8502(95)00546-3 CrossRefGoogle Scholar
  25. Karar K, Gupta AK, Kumar A, Biswas A (2006) Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India. Environ Monit Assess 120:347–360. doi: 10.1007/s10661-005-9067-7 CrossRefGoogle Scholar
  26. Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Assess 90:1–21. doi: 10.1023/b:emas.0000003555.36394.17 CrossRefGoogle Scholar
  27. Kim K-H, Lee J-H, Jang M-S (2002) Metals in airborne particulate matter from the first and second industrial complex area of Taejon city, Korea. Environ Pollut 118:41–51. doi: 10.1016/S0269-7491(01)00279-2 CrossRefGoogle Scholar
  28. Lim J-M, Lee J-H, Moon J-H, Chung Y-S, Kim K-H (2010) Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res 96:53–64. doi: 10.1016/j.atmosres.2009.11.013 CrossRefGoogle Scholar
  29. Lippmann M (2011) Particulate matter (PM) air pollution and health: regulatory and policy implications. Air Qual Atmos Health 5:237–241. doi: 10.1007/s11869-011-0136-5 CrossRefGoogle Scholar
  30. Loyola J, Arbilla G, Quiterio SL, Escaleira V, Minho AS (2012) Trace metals in the urban aerosols of Rio de Janeiro city. J Braz Chem Soc 23:628–638Google Scholar
  31. Lv W, Wang Y, Querol X, Zhuang X, Alastuey A, López A, Viana M (2006) Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. Environ Geol 51:121–132. doi: 10.1007/s00254-006-0310-5 CrossRefGoogle Scholar
  32. Machado A, Garcia N, Garcia C, Acosta L, Cordova A, Linares M, Giraldoth D, Velasquez H (2008) Contaminación por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tráfico vehicular. Rev Int Contam Ambie 24:171–182Google Scholar
  33. Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961. doi: 10.1016/S1352-2310(01)00486-1 CrossRefGoogle Scholar
  34. Molnár A, Mészáros E (2001) On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmos Environ 35:5053–5058. doi: 10.1016/S1352-2310(01)00314-4 CrossRefGoogle Scholar
  35. Morales-García SS, Rodríguez-Espinosa PF, Jonathan MP, Navarrete-López M, Herrera-García MA, Muñoz-Sevilla NP (2013) Characterization of As and trace metals embedded in PM10 particles in Puebla City, México. Environ Monit Assess:1–13. doi: 10.1007/s10661-013-3355-4
  36. Mugica V, Ortiz E, Molina L, De Vizcaya-Ruiz A, Nebot A, Quintana R, Aguilar J, Alcántara E (2009) PM composition and source reconciliation in Mexico City. Atmos Environ 43:5068–5074. doi: 10.1016/j.atmosenv.2009.06.051 CrossRefGoogle Scholar
  37. Mundfrom DJ, Shaw DG, Ke TL (2005) Minimum sample size recommendations for conducting factor analyses. Int J Test 5:159–168. doi: 10.1207/s15327574ijt0502_4 CrossRefGoogle Scholar
  38. Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol Air Qual Res 13:523–536. doi: 10.4209/aaqr.2012.04.0095 Google Scholar
  39. Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, de la Sánchez Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231. doi: 10.1016/j.atmosenv.2007.05.022 CrossRefGoogle Scholar
  40. Ragosta M, Caggiano R, D’Emilio M, Macchiato M (2002) Source origin and parameters influencing levels of heavy metals in TSP, in an industrial background area of Southern Italy. Atmos Environ 36:3071–3087. doi: 10.1016/S1352-2310(02)00264-9 CrossRefGoogle Scholar
  41. Rampazzo G, Masiol M, Visin F, Pavoni B (2008) Gaseous and PM10-bound pollutants monitored in three sites with differing environmental conditions in the venice area (Italy). Water Air Soil Pollut 195:161–176. doi: 10.1007/s11270-008-9735-7 CrossRefGoogle Scholar
  42. Salvador P, Artíñano B, Alonso DG, Querol X, Alastuey A (2004) Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmos Environ 38:435–447. doi: 10.1016/j.atmosenv.2003.09.070 CrossRefGoogle Scholar
  43. Sobanska S, Coeur C, Maenhaut W, Adams F (2003) SEM-EDX characterisation of tropospheric aerosols in the negev desert (Israel). J Atmos Chem 44:299–322. doi: 10.1023/a:1022969302107 CrossRefGoogle Scholar
  44. Song Y, Zhang J, Yu S, Wang T, Cui X, Du X, Jia G (2012) Effects of chronic chromium(vi) exposure on blood element homeostasis: an epidemiological study. Metallomics 4:463–472. doi: 10.1039/C2MT20051A CrossRefGoogle Scholar
  45. Srimuruganandam B, Shiva Nagendra SM (2011) Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Sci Total Environ 409:3144–3157. doi: 10.1016/j.scitotenv.2011.04.042 CrossRefGoogle Scholar
  46. Stigter JB, de Haan HPM, Guicherit R, Dekkers CPA, Daane ML (2000) Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environ Pollut 107:451–464. doi: 10.1016/S0269-7491(99)00123-2 CrossRefGoogle Scholar
  47. Teixeira EC, Meira L, Santana ERR, Wiegand F (2008) Chemical composition of PM10 and PM2.5 and seasonal variation in south Brazil. Water, Air. Soil Pollut 199:261–275. doi: 10.1007/s11270-008-9876-8 CrossRefGoogle Scholar
  48. Toledo V, Almeida Júnior P, Quiterio S, Arbilla G, Moreira A, Escaleira V, Moreira J (2008) Evaluation of levels, sources and distribution of toxic elements in PM10 in a suburban industrial region, Rio de Janeiro, Brazil. Environ Monit Assess 139:49–59. doi: 10.1007/s10661-007-9815-y CrossRefGoogle Scholar
  49. Umbría A, Galán M, Muñoz M, Martín R (2004) Characterization of atmospheric particles: analysis of particles in the Campo de Gibraltar. Atmosfera 17:191–206Google Scholar
  50. Vahter M, Åkesson A, Lidén C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95. doi: 10.1016/j.envres.2006.08.003 CrossRefGoogle Scholar
  51. Van Dingenen R, Raes F, Putaud J-P, Baltensperger U, Charron A, Facchini M, Decesari S, Fuzzi S, Gehrig R, Hansson H-C (2004) A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2561–2577CrossRefGoogle Scholar
  52. Viana M, Querol X, Alastuey A, Gil JI, Menéndez M (2006) Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65:2411–2418. doi: 10.1016/j.chemosphere.2006.04.060 CrossRefGoogle Scholar
  53. Wang H, Shooter D (2005) Source apportionment of fine and coarse atmospheric particles in Auckland, New Zealand. Sci Total Environ 340:189–198. doi: 10.1016/j.scitotenv.2004.08.017 CrossRefGoogle Scholar
  54. Wang X, Bi X, Sheng G, Fu J (2006) Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess 119:425–439. doi: 10.1007/s10661-005-9034-3 CrossRefGoogle Scholar
  55. Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. doi: 10.1016/0016-7037(95)00038-2 CrossRefGoogle Scholar
  56. Wróbel A, Rokita E, Maenhaut W (2000) Transport of traffic-related aerosols in urban areas. Sci Total Environ 257:199–211. doi: 10.1016/S0048-9697(00)00519-2 CrossRefGoogle Scholar
  57. Yang X, Ren D, Sun W, Li X, Huang B, Chen R, Lin C, Pan X (2014) Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks. Environ Sci Pollut R 22:6696–6712. doi: 10.1007/s11356-014-3858-8 CrossRefGoogle Scholar
  58. Zhang N, Han B, He F, Xu J, Niu C, Zhou J, Kong S, Bai Z, Xu H (2014) Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Qual Atmos Health 8:347–357. doi: 10.1007/s11869-014-0289-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • P. F. Rodriguez-Espinosa
    • 1
  • R. M. Flores-Rangel
    • 2
  • V. Mugica-Alvarez
    • 3
  • S. S. Morales-Garcia
    • 1
    • 4
  1. 1.Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD)Instituto Politécnico Nacional (IPN)MéxicoMéxico
  2. 2.Faculty of Engineering, Environmental Engineering DepartmentMarmara UniversityIstanbulTurkey
  3. 3.Depto. de Química AplicadaUniversidad Autónoma Metropolitana Unidad AzcapotzalcoMéxicoMéxico
  4. 4.Centro Mexicano para la Producción más Limpia (CMPL)Instituto Politécnico Nacional (IPN)MéxicoMéxico

Personalised recommendations