Skip to main content
Log in

Long-term indoor VOC concentrations assessment a trend analysis of distribution, disposition, and personal exposure in cohort study samples

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Inhalation is one of the entry ports for different chemicals into the human body. In order to investigate this application route and its negative health effect to humans, the presence of volatile organic compounds (VOCs) in indoor air is monitored since many years. To assess global trends and changes of the distribution and disposition of VOCs and the corresponding personal exposure, this study analyzed annual indoor air concentrations collected over a period of 9 (2006–2014) years in the context of a birth control cohort study of 72 VOCs. Additionally, Short Time-series Expression Model (STEM) was used to identify certain correlation for VOCs from different compound classes. For ~42 % of the compounds, a tendency to lower annual median indoor air concentrations was found, and for ~10 % of the VOCs, a trend to higher annual median indoor air concentrations. No such tendencies were observed for ~22 % of the investigated compounds. For ~26 % of the VOCs, the applied linear regression model was not suitable to predict global trends as annual median values were not linearly distributed. Mann-Kendall test was used to (i) confirm the results from the linear regression model and to (ii) calculate trends for those compounds, where linear regression was found to be unsuitable. Thus, for only approximately four of the investigated VOCs, no prediction was possible using both statistical approaches. STEM analysis revealed the connection of benzene, ethylbenzene, m+p xylene, α-pinene, 3-carene, pentadecane, and decamethlycyclopentasiloxane, in addition to the correlation of 1-butanol, chlorobenzene, heptanal, and 2-ethyl-1-hexanol concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aziz JJ, Ling M, Rifai HS, Newell CJ, Gonzales JR (2003) MAROS: a decision support system for optimizing monitoring plans (vol 41, pg 355. Ground Water 41:405–405

    Article  CAS  Google Scholar 

  • Bekanntmachung des U (2014a) Guide values for 1-butanol in indoor air. Report of the German Ad Hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and of the States’ Supreme Health Authorities. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:733–743. doi:10.1007/s00103-014-1972-x

    Article  Google Scholar 

  • Bekanntmachung des U (2014b) Guide values for 1-methyl-2-pyrrolidone in indoor air. Report of the German Ad-hoc Working Group on indoor Guidelines of the Indoor Air Hygiene Committee and of the States' Supreme Health Authorities. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:1232–1241. doi:10.1007/s00103-014-2041-1

    Article  Google Scholar 

  • Bekanntmachung des U (2014c) Indoor air guide values for ethyl acetate. Communication of the German Ad Hoc Working Group on Indoor Air Guidelines of the Indoor Air Hygiene Committee and the Supreme State Health Authorities. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:1442–1450. doi:10.1007/s00103-014-2067-4

    Article  Google Scholar 

  • de Blas M, Navazo M, Alonso L, Durana N, Gomez MC, Iza J (2012) Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci Total Environ 426:327–335. doi:10.1016/j.scitotenv.2012.04.003

    Article  Google Scholar 

  • Dietert RR, Hedge A (1996) Toxicological considerations in evaluating indoor air quality and human health: impact of new carpet emissions. Crit Rev Toxicol 26:633–707. doi:10.3109/10408449609037480

    Article  CAS  Google Scholar 

  • Diez U et al (2000) Effects of indoor painting and smoking on airway symptoms in atopy risk children in the first year of life results of the LARS-study. Leipzig Allergy High-Risk Children Study. Int J Hyg Environ Health 203:23–28

    Article  CAS  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. Bmc Bioinformatics 7:191. doi:10.1186/1471-2105-7-191

    Article  Google Scholar 

  • Franck U et al (2014) Prenatal VOC exposure and redecoration are related to wheezing in early infancy. Environ Int 73:393–401. doi:10.1016/j.envint.2014.08.013

    Article  CAS  Google Scholar 

  • Heinrich J (2011) Influence of indoor factors in dwellings on the development of childhood asthma. Int J Hyg Environ Health 214:1–25. doi:10.1016/j.ijheh.2010.08.009

    Article  Google Scholar 

  • Herbarth O, Matysik S (2013) Long-term trend of indoor volatile organic compounds—a 15-year follow-up considering real living conditions. Indoor Built Environ 22:669–677. doi:10.1177/1420326x12458298

    Article  Google Scholar 

  • Jia CR, D’Souza J, Batterman S (2008) Distributions of personal VOC exposures: a population-based analysis. Environ Int 34:922–931. doi:10.1016/j.envint.2008.02.002

    Article  CAS  Google Scholar 

  • Kamijima M et al. (2002) 2-ethyl-1-hexanol in indoor air as a possible cause of sick building symptoms (vol 44, pg 188, 2002). J Occup Health 44:Ar2-Ar2

  • Klepeis NE et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252. doi:10.1038/sj.jea.7500165

    Article  CAS  Google Scholar 

  • Lioy PJ, Rappaport SM (2011) Exposure science and the exposome: an opportunity for coherence in the environmental health sciences. Environ Health Persp 119:A466–A467. doi:10.1289/Ehp.1104387

    Article  Google Scholar 

  • M.I. K (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo Atmospheric Environment 41:554–566 doi:10.1016/j.atmosenv.2006.08.051

  • Rappaport SM (2011) Implications of the exposome for exposure science. J Expo Sci Env Epid 21:5–9. doi:10.1038/Jes.2010.50

    Article  CAS  Google Scholar 

  • Rehwagen M, Schlink U, Herbarth O (2003) Seasonal cycle of VOCs in apartments Indoor air 13:283–291

  • Rösch C, Kohajda T, Röder S, von Bergen M, Schlink U (2013) Relationship between sources and patterns of VOCs in indoor air. Atmos Pollut Res 5:129–137. doi:10.5094/APR.2014.016

    Article  Google Scholar 

  • Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S (2004) Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 59:746–751. doi:10.1136/thx.2003.013680

    Article  CAS  Google Scholar 

  • Rumchev K, Brown H, Spickett J (2007) Volatile organic compounds: do they present a risk to our health? Rev Environ Health 22:39–55

    Article  CAS  Google Scholar 

  • Schlink U, Rehwagen M, Damm M, Richter M, Borte M, Herbarth O (2004) Seasonal cycle of indoor-VOCs: comparison of apartments and cities. Atmos Environ 38:1181–1190. doi:10.1016/j.atmosenv.2003.11.003

    Article  CAS  Google Scholar 

  • Sofuoglu SC, Aslan G, Inal F, Sofuoglu A (2011) An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int J Hyg Environ Health 214:36–46. doi:10.1016/j.ijheh.2010.08.008

    Article  CAS  Google Scholar 

  • Spickett J, Rumchev K, Jing H (2013) The Domestic Environment and Respiratory Health of School Children in Zongshan, China. Asia Pac J Public Health doi:10.1177/1010539512472944

  • EPA. US (2011) Exposure Factors Handbook 2011 Edition (Final) vol 600. EPA, vol R-09/052F.

  • Wallace LA (2001) Human exposure to volatile organic pollutants: implications for indoor air studies. Annu Rev Energ Env 26:269–301. doi:10.1146/annurev.energy.26.1.269

    Article  Google Scholar 

  • Weisse K et al. (2011) Circulating Eosinophil/Basophil (Eo/B) Progenitors at One Year of Age Positively Correlate with Atopic Eczema and Indoor Chemical Exposure in the LINA Study. J Allergy Clin Immun 127:Ab146-Ab146 doi:DOI 10.1016/j.jaci.2010.12.581

  • Weisse K et al (2012a) The LINA cohort: indoor chemical exposure, circulating eosinophil/basophil (Eo/B) progenitors and early life skin manifestations. Clin Exp Allergy 42:1337–1346. doi:10.1111/j.1365-2222.2012.04024.x

    Article  CAS  Google Scholar 

  • Weisse K et al. (2012) The LINA cohort: indoor chemical exposure, circulating eosinophil/basophil (Eo/B) progenitors and early life skin manifestations. Clin Exp Allergy 42:1337–1346 doi:DOI 10.1111/j.1365-2222.2012.04024.x

  • Weisse K et al (2012c) Maternal and newborn vitamin D status and its impact on atopy development in the German LINA cohort study. Allergy 67:201–201

    Article  Google Scholar 

  • Weisse K et al. (2012) Maternal and newborn vitamin D status and its impact on fetal regulatory T cell development and children's atopy risk in the German LINA cohort study. J Reprod Immunol 94:53–54 doi:DOI 10.1016/j.jri.2012.03.335

  • Weisse K et al (2013) Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study. Allergy 68:220–228. doi:10.1111/all.12081

    Article  CAS  Google Scholar 

  • Wolkoff P, Nielsen GD (2001) Organic compounds in indoor air - their relevance for perceived indoor air quality? Atmos Environ 35:4407–4417 doi:Doi 10.1016/S1352-2310(01)00244-8

  • World Health Organization. Regional Office for Europe (2010) WHO guidelines for indoor air quality: selected pollutants. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

Download references

Acknowledgements

The authors thank Sven Baumann, Soeren Grunwald, Gabriele Heimpold, Jacqueline Kobelt, Melanie Nowak, Maxie Rockstroh, Carolin Roesch, and Ulrike E. Rolle-Kampczyk for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Wissenbach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wissenbach, D.K., Winkler, B., Otto, W. et al. Long-term indoor VOC concentrations assessment a trend analysis of distribution, disposition, and personal exposure in cohort study samples. Air Qual Atmos Health 9, 941–950 (2016). https://doi.org/10.1007/s11869-016-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0396-1

Keywords

Navigation