Air Quality, Atmosphere & Health

, Volume 9, Issue 8, pp 867–879 | Cite as

Air pollutant exposure and inhaled dose during urban commuting: a comparison between cycling and motorized modes

  • Carla A. RamosEmail author
  • Humbert T. Wolterbeek
  • Susana M. Almeida


Active commuting has great health, environment, economic, and social benefits. However, cyclists are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. Consequently, more information on differences in inhaled doses between different transport modes is needed. The aim of this study is to assess and map the exposure of travelers to air pollutants using different transportation modes and to consider minute ventilation variablity and travel duration for the calculation of inhaled dose. Particulate matter (PM10, PM4, PM2.5 and PM1), CO, volatile organic compound (VOC), CO2, and O3 were measured between December 2013 and March 2014 in a total of 75 travels performed by bus, metro, car, bicycle, and motorcycle at five periods of the day (8, 11, 14, 17:30, and 21 h). Results showed that car drivers and bus passengers in urban streets may be exposed to higher pollutant levels than cyclists traveling in the same streets. However, this enhanced air pollution exposure is compensated by the higher ventilation rates of cyclists, which presented the highest inhaled doses. To reduce exposure concentrations, spatial and temporal separation of cyclists from motorized vehicle traffic should be achieved with separated bicycle facilities, low volume routes, and off-peak travel.


Active transportation Bicycle Outdoor air Exposure GIS 



The authors gratefully acknowledge the colleagues and friends that collaborate in this study, the Municipality Police of Lisbon, and also Fundação para a Ciência e Tecnologia (FCT) for funding the PhD grant (SFRH/BD/79277/2011) and S.M. Almeida contract (IF/01078/2013). C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project.


  1. Adams HS, Nieuwenhuijsen MJ, Colvile RN, McMullen MAS, Khandelwal P (2001) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci Tot Environ 279(1–3):29–44. doi: 10.1016/S0048-9697(01)00723-9 CrossRefGoogle Scholar
  2. Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A et al (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Ch 281:215–218. doi: 10.1007/s10967-009-0113-8 CrossRefGoogle Scholar
  3. Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the Western European coast urban aerosol. J Toxicol Env Heal A 76(4–5):252–262. doi: 10.1080/15287394.2013.757201 CrossRefGoogle Scholar
  4. Almeida SM, Silva AV, Sarmento S (2014) Effects of exposure to particles and ozone on hospital admissions for cardiorespiratory diseases in Setúbal, Portugal. J Toxicol Env Heal A 77(14–16):837–848. doi: 10.1080/15287394.2014.887399 CrossRefGoogle Scholar
  5. Almeida-Silva M, Wolterbeek HT, Almeida SM (2014) Elderly exposure to indoor air pollutants. Atmos Environ 85:54–63. doi: 10.1016/jatmosenv201311061
  6. Almeida SM, Lage J, Fernández B, Garcia S, Reis MA, Chaves PC (2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci Tot Environ. doi: 10.1016/jscitotenv201503112 Google Scholar
  7. Berghmans P, Bleux N, Int Panis L, Mishra VK, Torfs R, Van Poppel M (2009) Exposure assessment of a cyclist to PM10 and ultrafine particles. Sci Tot Environ 407:1286–1298. doi: 10.1016/jscitotenv200810041 CrossRefGoogle Scholar
  8. Bigazzi AY, Figliozzi MA (2014) Review of urban bicyclists' intake and uptake of traffic-related air pollution. Transport Rev 34(2):221–245. doi: 10.1080/014416472014897772 CrossRefGoogle Scholar
  9. Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Int Panis L, Degraeuwe B, Meeusen R (2011) No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett 500(2):129–132. doi: 10.1016/j.neulet.2011.06.019 CrossRefGoogle Scholar
  10. Canha N, Almeida SM, Freitas MC, Wolterbeek HT, Cardoso J, Pio C et al (2014) Impact of wood burning on indoor PM25 in a primary school in rural Portugal. Atmos Environ 94:663–670. doi: 10.1016/jatmosenv201405080 CrossRefGoogle Scholar
  11. Chen X, Zhang G, Zhang Q, Chen H (2011) Mass concentrations of BTEX inside air environment of buses in Changsha, China. Build Environ 46:421–427. doi: 10.1016/jbuildenv201008005 CrossRefGoogle Scholar
  12. Cole-Hunter T, Morawska L, Stewart I, Jayaratne R, Solomon C (2012) Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic. Atmos Environ 61:197–203. doi: 10.1016/jatmosenv201206041 CrossRefGoogle Scholar
  13. Cruz AMJ, Sarmento S, Almeida SM, Silva AV, Alves C et al (2015) Association between atmospheric pollutants and hospital admissions in Lisbon. Environ Sci Pollut R 22(7):5500–5510. doi: 10.1007/s11356-014-3838-z
  14. de Hartog JJ, Boogaard H, Hoek G (2010) Do the health benefits of cycling outweight the risks? Environ Health Persp 118(8):1109–1116. doi: 10.1289/ehp.0901747 CrossRefGoogle Scholar
  15. de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, Nieuwenhuijsen M (2012) A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos Environ 59:151–159. doi: 10.1016/jatmosenv201205013 CrossRefGoogle Scholar
  16. Dekoninck L, Botteldooren D, Int Panis L (2015) Using city-wide mobile noise assessments to estimate bicycle trip annual exposure to black carbon. Environ Int 83:192–201. doi: 10.1016/jenvint201507001 CrossRefGoogle Scholar
  17. Diapouli E, Chaloulakou A, Spyrellis N (2008) Indoor and outdoor PM concentrations at a residential environment, in the Athens area. Global NEST J 10(2):201–208. doi: 10.1177/1420326X06074836 Google Scholar
  18. Directive 2008/50/EC European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.Google Scholar
  19. Dons E, Panis LI, Poppel MV, Theunis J, Wets G (2012) Personal exposure to black carbon in transport microenvironments. Atmos Environ 55:392–398. doi: 10.1016/jatmosenv201203020 CrossRefGoogle Scholar
  20. EPA (2011) Exposure factors handbook: 2011 edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from
  21. Giles LV, Koehle MS (2013) The health effects of exercising in air pollution. Sports Med 44(2):223–249. doi: 10.1007/s40279-013-0108-z CrossRefGoogle Scholar
  22. Godoi RHM, Godoi AFL, de Quadros LC, Polezer G, Silva TOB et al (2013) Risk assessment and spatial chemical variability of PM collected at selected bus stations. Air Qual Atmos Health 6:725–735. doi: 10.1007/s11869-013-0210-2 CrossRefGoogle Scholar
  23. Int Panis L, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N et al (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44:2263–2270. doi: 10.1016/jatmosenv201004028 CrossRefGoogle Scholar
  24. Jacobs L, Nawrot TS, Geus B, Meeusen R, Degraeuwe B, Bernard A et al (2010) Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health 9:64. doi: 10.1186/1476-069X-9-64 CrossRefGoogle Scholar
  25. Kadiyala A, Kumar A (2013) Quantification of in-vehicle gaseous contaminants of carbon dioxide and carbon monoxide under varying climatic conditions. Air Qual Atmos Health 6:215–224. doi: 10.1007/s11869-011-0163-2 CrossRefGoogle Scholar
  26. Kam W, Cheung K, Daher N, Sioutas C (2011) Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos Environ 45:1506–1516. doi: 10.1016/jatmosenv201012049 CrossRefGoogle Scholar
  27. Kampa M, Castañas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi: 10.1016/jenvpol200706012 CrossRefGoogle Scholar
  28. Kaur S, Nieuwenhuijsen M, Colvile R (2005) Personal exposure of street canyon intersection users to PM25, ultrafine particle counts and carbon monoxide in Central London, UK. Atmos Environ 39(20):3629–3641. doi: 10.1016/jatmosenv200502046 CrossRefGoogle Scholar
  29. Kaur S, Nieuwenhuijsen MJ, Colvile RN (2007) Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos Environ 41:4781–4810. doi: 10.1016/jatmosenv200702002 CrossRefGoogle Scholar
  30. Kim CS, Alexis NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC (2011) Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 66 hours. Am J Resp Crit Care 183:1215–1221. doi: 10.1164/rccm201011-1813OC CrossRefGoogle Scholar
  31. Limasset JC, Diebold F, Hubert G (1993) Exposition des conducteurs de bus urbains aux polluants de la circulation automobile: assessment of bus drivers’ exposure o the pollutants of urban traffic. Sci Tot Environ 134(1–3):39–49CrossRefGoogle Scholar
  32. López-Villarrubia E, Iñiguez C, Costa O, Ballester F (2015) Acute effects of urban air pollution on respiratory emergency hospital admissions in the Canary Islands. Air Qual Atmos Health. doi: 10.1007/s11869-015-0382-z Google Scholar
  33. McNabola A, Broderick BM, Gill LW (2008) Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: personal exposure and uptake. Amos Environ 42:6496–6512. doi: 10.1016/jatmosenv200804015 Google Scholar
  34. McNamara M, Noonan C, Ward T (2011) Correction factor for continuous monitoring of wood smoke fine particulate matter. Aerosol Air Qual Res 11:315–322. doi: 10.4209/aaqr.2010.08.0072 Google Scholar
  35. Mugica-Álvarez V, Figueroa-Lara J, Romero-Romo M, Sepulveda-Sanchéz J, López-Moreno T (2012) Concentration and properties of airborne particles in the Mexico City subway system. Atmos Environ 49:284–293. doi: 10.1016/jatmosenv201111038 CrossRefGoogle Scholar
  36. Nyhan M, McNabola A, Misstear B (2014) Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci Tot Environ 468–469:821–831. doi: 10.1016/jscitotenv201308096 CrossRefGoogle Scholar
  37. Querol X, Moreno T, Karanasiou A, Reche C, Alastuey A, Viana M et al (2012) Variability of levels and composition of PM10 and PM25 in the Barcelona metro system. Atmos Chem Phys 12:5055–5076. doi: 10.5194/acp-12-5055-2012 CrossRefGoogle Scholar
  38. Ramos CA, Wolterbeek TH, Almeida SM (2014) Exposure to indoor air pollutants during physical activity in fitness centers. Build Environ 82:349–360. doi: 10.1016/jbuildenv201408026 CrossRefGoogle Scholar
  39. Ramos CA, Reis J, Almeida T, Alves F, Wolterbeek HT, Almeida SM (2015) Estimating the inhaled dose of pollutants during indoor physical activity. Sci Tot Environ 527-528C:111–118. doi: 10.1016/jscitotenv201504120 CrossRefGoogle Scholar
  40. Rojas-Rueda D, de Nazelle A, Tainio M, Nieuwenhuijsen MJ (2011) The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ 343:d4521. doi: 10.1136/bmjd4521 CrossRefGoogle Scholar
  41. Salma I, Weidinger T, Maenhaut W (2007) Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos Environ 41:8391–8405. doi: 10.1016/jatmosenv200706017 CrossRefGoogle Scholar
  42. Srebot V, Gianicolo E, Rainaldi G, Trivella MG, Sicari R (2009) Ozone and cardiovascular injury. Cardiovasc Ultrasoun 7:30. doi: 10.1186/1476-7120-7-30 CrossRefGoogle Scholar
  43. Steinemann A (2015) Volatile emissions from common consumer products. Air Qual Atmos Health 8:273–281. doi: 10.1007/s11869-015-0327-6 CrossRefGoogle Scholar
  44. Su FC, Mukherjee B, Batterman S (2013) Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data. Environ Res 126:192–203. doi: 10.1016/jenvres201308005 CrossRefGoogle Scholar
  45. Weuve J, Puett R, Schwartz J, Yanosky J, Laden F, Grodstein F (2012) Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med 172(3):219–227. doi: 10.1001/archinternmed.2011.683 CrossRefGoogle Scholar
  46. WHO (2009) Amsterdam Declaration. Third High-level Meeting on Transport, Health and Environment Amsterdam, the Netherlands, 22–23 January 2009.Google Scholar
  47. Wong LT, Mui KW, Cheung CT, Chan WY, Lee YH, Cheung CL (2011) In-cabin exposure levels of carbon monoxide, carbon dioxide and airborne particulate matter in air-conditioned buses of Hong Kong. Indoor Built Environ 20(4):464–470. doi: 10.1177/1420326X11409450 CrossRefGoogle Scholar
  48. Ye X, Lian Z, Jiang C, Zhou Z, Chen H (2010) Investigation of indoor environmental quality in Shanghai metro stations, China. Environ Monit Assess 167:643–651. doi: 10.1007/s10661-009-1080-9 CrossRefGoogle Scholar
  49. Zuurbier M, Hoek G, van den Hazel P, Brunekreef B (2009) Minute ventilation of cyclists, car and bus passengers: an experimental study. Environ Health 8:48. doi: 10.1186/1476-069X-8-48 CrossRefGoogle Scholar
  50. Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P et al (2010) Commuters’ exposure to particulate matter air pollution in affected by mode of transport, fuel type and route. Environ Health Persp 118(6):783–789. doi: 10.1289/ehp.0901622 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Carla A. Ramos
    • 1
    • 2
    Email author
  • Humbert T. Wolterbeek
    • 2
  • Susana M. Almeida
    • 1
  1. 1.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  2. 2.Faculty of Applied Sciences, Department of Radiation, Radionuclides and ReactorsTechnical University of DelftDelftThe Netherlands

Personalised recommendations