Skip to main content

The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment

Abstract

Office buildings can be considered a “second home” for working people and so the contribution of pollutants in this indoor environment to a person’s overall exposure is significant. The aims of this study were to examine the composition of PM10 and the sources influencing the indoor and outdoor office environments. The PM10 sampling was performed using a mini-vol portable sampler at two sampling sites from May to August 2014 for daily 24 h sampling. The concentrations of ionic species (F, Cl, NO3 , SO4 2−) were analysed using ion chromatography while the concentration of major elements (Mg, Ca, K, Na) and trace elements (Mn, Ni, Fe, Cu, Zn, Pb, Cr, Cd, Al) were determined by inductively couple plasma-mass spectrometry (ICP-MS). The concentration of NH4 + was determined using the indophenol blue method. The results showed that the average concentrations of PM10 were 61.3 ± 27.0 μg/m3 (indoor) and 101 ± 42.8 μg/m3 (outdoor) with an indoor/outdoor ratio value of <1. The dominant components in PM10 for both the indoor and outdoor environments were NO3 , SO4 2−, Na, Fe, Al and Zn. Source apportionment analysis of the PM10 composition identified three sources of PM10 in the indoor and outdoor environments. The major source for indoor PM10 was Earth’s crust elements (95 %) followed by oil burning and human activities (4 %) and motor vehicles (1 %). The major source for outdoor PM10 was the Earth’s crust and motor exhaust emissions (80 %) with contributions of other sources such as oil burning and human activities (18 %) and motor vehicles (2 %). The potential health risks for trace elements in PM10, via inhalation exposure to the indoor occupants, show that the total hazard quotient (HQ) value was slightly higher than acceptable limits (1.0). The total excess life time carcinogenic risk (ELCR) value for both sampling stations was higher than the acceptable limit (1.0 × E−6), suggesting a high exposure to carcinogenic risk. This study suggests there is a high contribution of outdoor sources to the indoor office environment where PM10 can significantly affect the indoor air quality and occupant health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen RW, Gombojav E, Barkhasragchaa B, Byambaa T, Lkhasuren O, Amram O, Takaro TK, Janes CR (2013) An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6:137–150

    CAS  Article  Google Scholar 

  2. Alves C, Nunes T, Silva J, Duarte M (2013) Comfort parameter and particulate matter (PM10 and PM2.5) in school classroom and outdoor air. Aerosol Air Qual Res 13:1521–1535

    CAS  Google Scholar 

  3. Azmi SZ, Latif MT, Ismail AS, Juneng L, Jemain AA (2010) Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Qual Atmos Health 3:53–64

    CAS  Article  Google Scholar 

  4. Balakrishna G, Pervez S, Bisht DS (2010) Chemical mass balance estimation of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India. Atmos Chem Phys Discuss 10:26411–26436

    Article  Google Scholar 

  5. Cao J-J, Li H, Chow JC, Watson JG, Lee S, Rong B, Dong J-G, Ho K-F (2011) Chemical composition of indoor and outdoor atmospheric particles at Emperor Qin’s Terra-cotta Museum, Xi’an, China. Aerosol Air Qual Res 11:70–79

    CAS  Google Scholar 

  6. Chen C, Zhao B (2011) Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ 45:275–288

    CAS  Article  Google Scholar 

  7. Cheng S-H, Yang L-X, Zhou X-H, Xue L-K, Gao X-M, Zhou Y, Wang W-X (2011) Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmos Environ 45:4631–4640

    CAS  Article  Google Scholar 

  8. Chithra VS, Shiva Nagendra SM (2013) Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmos Environ 77:579–587

    CAS  Article  Google Scholar 

  9. Ferreira-Baptista L, De Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512

    CAS  Article  Google Scholar 

  10. Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, Kiranoglu M, Twardella D (2008) Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos Environ 42:6597–6605

    CAS  Article  Google Scholar 

  11. Geller MD, Chang M, Sioutas C, Ostro BD, Lipsett MJ (2002) Indoor/outdoor relationship and chemical composition of fine and coarse particles in the southern California deserts. Atmos Environ 36:1099–1110

    CAS  Article  Google Scholar 

  12. Guo H, Morawska L, He C, Gilbert D (2008) Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmos Environ 42:757–768

    CAS  Article  Google Scholar 

  13. Habre R, Coull B, Moshier E, Godbold J, Grunin A, Nath A, Castro W, Schachter N, Rohr A, Kattan M, Spengler J, Koutrakis P (2013) Sources of indoor air pollution in New York City residences of asthmatic children. J Expo Sci Environ Epidemiol 24:1–10

    Google Scholar 

  14. Han NMM, Latif MT, Othman M, Dominic D, Mohamad N, Juahir H, Tahir NM (2014) Composition of selected heavy metals in road dust from Kuala Lumpur City Centre. Environ Earth Sci 72(3):849–859

    CAS  Article  Google Scholar 

  15. Hassanvand MS, Naddafi K, Faridi S, Arhami M, Nabizadeh R, Sowlat MH, Pourpak Z, Rastkari N, Momeniha F, Kashani H, Gholampour A, Nazmara S, Alimohammadi M, Goudarzi G, Yunesian M (2014) Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos Environ 82:375–382

    CAS  Article  Google Scholar 

  16. He C, Morawska L, Taplin L (2007) Particles emission characteristic of office printers. Environ Sci Technol 41(17):6039–6045

    CAS  Article  Google Scholar 

  17. Ho KF, Cao JJ, Harrison RM, Lee SC, Bau KK (2004) Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong. Atmos Environ 38:6327–6335

    CAS  Article  Google Scholar 

  18. Hoek G, Kos G, Harrison R, de Hartog J, Meliefste K, ten Brink H, Katsouyanni K, Karakatsani A, Lianou M, Kotronarou A, Kavouras I, Pekkanen J, Vallius M, Kulmala M, Puustinen A, Thomas S, Meddings C, Ayres J, van Wijen J, Hameri K (2008) Indoor–outdoor relationships of particle number and mass in four European cities. Atmos Environ 42:156–169

    CAS  Article  Google Scholar 

  19. Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

    CAS  Article  Google Scholar 

  20. Huang H, Lee S-C, Cao J-J, Zou C-W, Chen X-G, Fan S-J (2007) Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. J Environ Sci 19:35–43

    CAS  Article  Google Scholar 

  21. Jaradat QM, Momani KA, Jbarah AA, Massadeh A (2004) Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ Res 96:139–144

    CAS  Article  Google Scholar 

  22. John K, Karnae S, Crist K, Kim M, Kulkarni A (2007) Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio. J Air Waste Manag 57:394–406

    CAS  Article  Google Scholar 

  23. Jones NC, Thornton CA, Mark D, Harrison RM (2000) Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmos Environ 34:2603–2612

    CAS  Article  Google Scholar 

  24. Kagi N, Fujii S, Horiba Y, Namiki N, Ohtani Y, Emi H, Tamura H, Kim YS (2007) Indoor air quality for chemical and ultrafine particle contaminants from printers. Build Environ 42:1949–1954

    Article  Google Scholar 

  25. Khillare PS, Sarkar S (2012) Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmos Pollut Res 3:46–54

    CAS  Article  Google Scholar 

  26. Koponen IK, Asmi A, Keronen P, Puhto K, Kulmala M (2001) Indoor air measurement campaign in Helsinki, Finland 1999—the effect of outdoor air pollution on indoor air. Atmos Environ 35:1465–1477

    CAS  Article  Google Scholar 

  27. Latif MT, Yong SW, Saad A, Mohamad N, Baharuddin NH, Mokhtar M, Tahir NM (2013) Composition of heavy metals in indoor dust and their possible exposure: a case study of preschool children in Malaysia. Air Qual Atmos Health 7(2):181–193

    Article  Google Scholar 

  28. Lazaridis M, Aleksandropoulou V, Hanssen J, Dye C, Eleftheriadis K, Katsivela E (2008) Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway. J Air Waste Manag 58:346–356

    CAS  Article  Google Scholar 

  29. Lee SC, Lam S, Fai HK (2001) Characterization of VOCs, ozone, and PM 10 emissions from office equipment in an environmental chamber. Build Environ 36:837–842

    Article  Google Scholar 

  30. Madureira J, Paciência I, Fernandes EO (2012) Levels and indoor-outdoor relationships of size-specific particulate matter in naturally ventilated Portuguese schools. J Toxicol Environ Health A 75:1423–1436

    CAS  Article  Google Scholar 

  31. Mancuso TF (1975) Consideration of chromium as an industrial carcinogen. International Conference on Heavy Metals in the Environment, October 27–31, 1975, Toronto, Ontario, Canada, 343–356

  32. Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci Total Environ 425:176–183

    CAS  Article  Google Scholar 

  33. Martuzevicius D, Grinshpun SA, Lee T, Hu S, Biswas P, Reponen T, LeMasters G (2008) Traffic-related PM2.5 aerosol in residential houses located near major highways: indoor versus outdoor concentrations. Atmos Environ 42:6575–6585

    CAS  Article  Google Scholar 

  34. Massey D, Masih J, Kulshrestha A, Habil M, Taneja A (2009) Indoor/outdoor relationship of fine particles less than 2.5μm (PM2.5) in residential homes locations in central Indian region. Build Environ 44:2037–2045

    Article  Google Scholar 

  35. Massey DD, Kulshrestha A, Taneja A (2013) Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos Environ 67:278–286

    CAS  Article  Google Scholar 

  36. Maynard D, Coull BA, Gryparis A, Schwartz J (2007) Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect 115(5):751–755

    CAS  Article  Google Scholar 

  37. Minguillón MC, Schembari A, Triguero-Mas M, de Nazelle A, Dadvand P, Figueras F, Salvado JA, Grimalt JO, Nieuwenhuijsen M, Querol X (2012) Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos Environ 59:426–436

    Article  Google Scholar 

  38. Morawska L, He C, Johnson G, Jayaratne R, Salthammer T, Wang H, Uhde E, Bostrom T, Modini R, Ayoko G, McGarry P, Wensing M (2009) An investigation into the characteristic and formation mechanisms of particles originating from operation of laser printers. Environ Sci Technol 43:1015–1022

    CAS  Article  Google Scholar 

  39. Othman M, Latif MT (2013) Dust and sas emissions from small-scale peat combustion. Aerosol Air Qual Res 13:1045–1059

    CAS  Google Scholar 

  40. Pavilonis BT, Anthony TR, O’Shaughnessy PT, Humann MJ, Merchant JA, Moore G, Thorne PS, Weisel CP, Sanderson WT (2013) Indoor and outdoor particulate matter and endotoxin concentrations in an intensely agricultural county. J Expo Sci Environ Epidemiol 23:299–305

    CAS  Article  Google Scholar 

  41. Pegas PN, Nunes T, Alves CA, Silva JR, Vieira SLA, Caseiro A, Pio CA (2012) Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmos Environ 55:80–89

    CAS  Article  Google Scholar 

  42. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Particulate air pollution as a predictor of mortality in prospective study of U.S. adults. Am J Respir Crit Care 115(3):669–674

    Article  Google Scholar 

  43. Quang TN, He C, Morawska L, Knibbs LD (2013) Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmos Environ 79:41–52

    CAS  Article  Google Scholar 

  44. Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231

    CAS  Article  Google Scholar 

  45. Rasmussen PE, Wheeler AJ, Hassan NM, Filiatreault A, Lanouette M (2007) Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: risk of contamination during sampling, handling and analysis. Atmos Environ 41(28):5897–5907

    CAS  Article  Google Scholar 

  46. Rivas I, Viana M, Moreno T, Bouso L, Pandolfi M, Alvarez-Pedrerol M, Forns J, Alastuey A, Sunyer J, Querol X (2015) Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmos Environ 106:129–138

    CAS  Article  Google Scholar 

  47. Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013) Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos Environ 65:205–214

    CAS  Article  Google Scholar 

  48. See SW, Balasubramanian R (2006) Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ Res 102:197–204

    CAS  Article  Google Scholar 

  49. See SW, Balasubramanian R (2008) Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos Environ 42:8852–8862

    CAS  Article  Google Scholar 

  50. Slezakova K, Pereira MC, Alvim-Ferraz MC (2009) Influence of tobacco smoke on the elemental composition of indoor particles of different sizes. Atmos Environ 43:486–493

    CAS  Article  Google Scholar 

  51. Taner S, Pekey B, Pekey H (2013) Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ 454–455:79–87

    Article  Google Scholar 

  52. Taylor SR, McLennan SM (1985) The continental crust; its composition and evolution; an examination of the geochemical record preserved in sedimentary rock. Blackwell, Oxford

    Google Scholar 

  53. Tippayawong N, Khuntong P, Nitatwichit C, Khunatorn Y, Tantakitti C (2009) Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Build Environ 44:188–197

    Article  Google Scholar 

  54. Tzollas NM, Zachariadis GA, Anthemidis AN, Stratis JA (2010) A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. Int J Environ Anal Chem 90(2):115–126

    CAS  Article  Google Scholar 

  55. USEPA (1994) Methods for derivation of inhalation reference concentration and application of inhalation dosimetry. Environmental criteria and assessment office. United States Environmental Protection Agency

  56. USEPA (2010) Risk Assessment Guidance for Superfund (RAGS) (Part A): human health evaluation manual. United States Environmental Protection Agency.http://www.epa.gov/oswer/riskassessment/ragsa/. Accessed 13 April 2015

  57. USEPA (2014) Regional Screening Level (RSL). United States Environmental Protection Agency.http://www.epa.gov/region9/superfund/prg/. Accessed 13 April 2015

  58. USEPA (2015) Integrated Risk Information System. United States Environmental Protection Agency.http://www.epa.gov/iris/index.html. Accessed 13 April 2015

  59. Wahid NB, Latif MT, Suratman S (2013) Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91:1508–1516

    CAS  Article  Google Scholar 

  60. Westphalen D, Koszalinski S (1999) Energy consumption characteristics of commercial building HVAC systems volume II : thermal distribution, Auxiliary equipment, and ventilation. Location

  61. Wolkoff P, Wilkins CK, Clausen PA, Larsen L (1993) Comparison of volatile organic compounds from processed paper and toners from office copiers and printers: methods, emission rates and modeled concentration. Indoor Air 3:113–123

    CAS  Article  Google Scholar 

  62. Zhou J, You Y, Bai Z, Hu Y, Zhang J, Zhang N (2011) Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci Total Environ 409:452–459

    CAS  Article  Google Scholar 

  63. Zhu C-S, Cao J-J, Shen Z-X, Liu S-X, Zhang T, Zhao Z-Z, Xu H-M, Zhang E-K (2012) Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China. Aerosol Air Qual Res 12:1157–1165

    Google Scholar 

Download references

Acknowledgments

This research was supported by Institute for Environment and Development (LESTARI) and Universiti Kebangsaan Malaysia with Research University Grant DIP-2014-005. Special thanks to Mr. Fairus Muhamad Darus for instrument handling and guidance, and Dr Rose Norman for proof reading this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohd Talib Latif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Othman, M., Latif, M.T. & Mohamed, A.F. The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment. Air Qual Atmos Health 9, 597–612 (2016). https://doi.org/10.1007/s11869-015-0368-x

Download citation

Keywords

  • Office building
  • Indoor environment
  • Health risk assessment
  • Particulate matter
  • Source apportionment