Air Quality, Atmosphere & Health

, Volume 8, Issue 5, pp 483–494 | Cite as

Temporal change of PM10 and its mass fraction during a dust storm in September 2009 in Australia

  • Rupak Aryal
  • Simon Beecham
  • Mohammad Kamruzzaman
  • Samantha Conner
  • Byeong-Kyu Lee


Frequent dust storms are a major concern in Australia due to associated human health risks and potential economic losses. From 23 to 24 September 2009, a dust storm passed over many east coast regions of Australia. This blanketed them with dust and reduced the visibility to a few hundred meters for several hours. The respirable particulate matter less than 10 μm (PM10) was monitored at 22 locations across New South Wales (NSW) by the Environmental Protection Agency. In addition, samples were collected in Sydney using a nine-stage cascade impactor both during and after the dust storm. The PM10 concentration over most of NSW jumped from less than 50 μg/m3 to more than 10,000 μg/m3 within a couple of hours and then dropped again to more normal levels (<50 μg/m3). The normal bimodal particle size distribution was observed to change to a multimodal distribution during a dust storm event. Also, the elemental ratio of Al to Si increased from 0.14 to 0.39 during the storm. An Al/Si ratio >0.3 indicates that the dust originated from inland desert areas and indeed was closely matched to Lake Eyre Basin crustal element data indicating it had travelled from central Australia to the eastern coasts.


PM10 Dust storm Particle size distribution Mineralogical content 


  1. Allen AG, Nemitz E, Shi JP, Harrison RM, Greenwood JC (2001) Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos Environ 35:4581–4591. doi: 10.1016/S1352-2310(01)00190-X CrossRefGoogle Scholar
  2. Aryal RK et al (2008) Seasonal PM10 dynamics in Kathmandu Valley. Atmos Environ 42:8623–8633CrossRefGoogle Scholar
  3. Aryal R, Kandel D, Acharya D, Chong MN, Beecham S (2012) Unusual Sydney dust storm and its mineralogical and organic characteristics. Environ Chem 9:537–546. doi: 10.1071/EN12131 CrossRefGoogle Scholar
  4. Aryal R, Kim A, Lee B-K, Kamruzzaman M, Beecham S (2013) Characteristics of atmospheric particulate matter and metals in industrial sites in Korea. Environ Pollut 2:10–21. doi: 10.5539/ep.v2n4p10 Google Scholar
  5. Ayala A, Brauer M, Mauderly JL, Samet JM (2012) Air pollutants and sources associated with health effects. Air Qual Atmos Health 5:151–167CrossRefGoogle Scholar
  6. Blanco A, de Tomasi F, Filippo E, Manno D, Perrone MR, Serra R, Tafuro AM, Tepore A (2003) Characterization of African dust over southern Italy. Atmos Chem Phys Discuss 3:2147–2159. doi: 10.5194/acpd-3-4633-2003 CrossRefGoogle Scholar
  7. Bowler JM (1976) Aridity in Australia: age, origins and expression in aeolian landforms and sediments. Earth Science Reviews, 12:279–310Google Scholar
  8. Chan YC, Vowles PD, McTainsh GH, Simpson RW, Cohen DD, Bailey GM, McOrist GD (2000) Characterisation and source identification of PM10 aerosol samples collected with a high volume cascade impactor in Brisbane (Australia). Sci Total Environ 262:5–19. doi: 10.1016/S0048-9697(00)00571-4 CrossRefGoogle Scholar
  9. Cohen DD et al (2004) Multielemental analysis and characterization of fine aerosols at several key ACE-Asia sites. J Geophys Res D-Atmos 109(D19S12):11–18Google Scholar
  10. Cohen DD, Stelcer E, Garton D, Crawford J (2011) Fine particle characterisation, source apportionment and long range dust transport into the Sydney Basin: a long term study between 1998 and 2009. Atmos Pollut Res 2:182–189CrossRefGoogle Scholar
  11. Didyk BM, Simoneit BRT, Alvaro Pezoa L, Luis Riveros M, Anselmo Flores A (2000) Urban aerosol particles of Santiago, Chile: organic content and molecular characterization. Atmos Environ 34:1167–1179. doi: 10.1016/S1352-2310(99)00403-3 CrossRefGoogle Scholar
  12. Donaldson K, MacNee W (2001) Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int J Hyg Environ Health 203:411–415CrossRefGoogle Scholar
  13. Ekström M, McTainsh GH, Chappell A (2004) Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99). Int J Climatol 24:1581–1599CrossRefGoogle Scholar
  14. Goldberg MS, Burnett RT, Yale J-F, Valois M-F, Brook JR (2006) Associations between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. Environ Res 100:255–267CrossRefGoogle Scholar
  15. Guerzoni S, Molinaroli E, Chester R (1997) Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications. Deep-Sea Res II Top Stud Oceanogr 44:631–654. doi: 10.1016/S0967-0645(96)00096-3 CrossRefGoogle Scholar
  16. Jayaratne ER, Johnson GR, McGarry P, Cheung HC, Morawska L (2011) Characteristics of airborne ultrafine and coarse particles during the Australian dust storm of 23 September 2009. Atmos Environ 45:3996–4001. doi: 10.1016/j.atmosenv.2011.04.059 CrossRefGoogle Scholar
  17. Kamruzzaman M, Beecham S, Metcalfe AV (2011) Non-stationarity in rainfall and temperature in the Murray Darling Basin. Hydrol Process 25:1659–1675. doi: 10.1002/hyp.7928 CrossRefGoogle Scholar
  18. Kan H, Chen B (2003) Air pollution and daily mortality in Shanghai: a time-series study. Arch Environ Health 58:360–367Google Scholar
  19. Karanasiou AA, Sitaras IE, Siskos PA, Eleftheriadis K (2007) Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos Environ 41:2368–2381. doi: 10.1016/j.atmosenv.2006.11.006 CrossRefGoogle Scholar
  20. Kim KW, Kim YJ, Oh SJ (2001) Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmos Environ 35:5157–5167CrossRefGoogle Scholar
  21. Knight AW, McTainsh GH, Simpson RW (1995) Sediment loads in an Australian dust storm: implications for present and past dust processes. CATENA 24:195–213. doi: 10.1016/0341-8162(95)00026-O CrossRefGoogle Scholar
  22. Kuenzli N et al (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801CrossRefGoogle Scholar
  23. Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204CrossRefGoogle Scholar
  24. Lee BK, Lee CH (2008) Analysis of acidic components, heavy metals and PAHS of particulate in the Changwon-Masan area of Korea. Environ Monit Assess 136:21–33CrossRefGoogle Scholar
  25. Leys JF, Heidenreich SK, Strong CL, McTainsh GH, Quigley S (2011) PM10 concentrations and mass transport during “Red Dawn”—Sydney 23 September 2009. Aeolian Res 3:327–342CrossRefGoogle Scholar
  26. Li X, Ge L, Dong Y, Chang H-C (2010) Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In: Geoscience and Remote Sensing Symposium (IGARSS), 2010 I.E. International. 2010 IEEE, pp 1039–1042Google Scholar
  27. Lim JM, Lee JH, Moon JH, Chung YS, Kim KH (2010) Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res 96:53–64CrossRefGoogle Scholar
  28. Limbeck A, Handler M, Puls C, Zbiral J, Bauer H, Puxbaum H (2009) Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmos Environ 43:530–538CrossRefGoogle Scholar
  29. Lu H-C (2002) The statistical characters of PM10 concentration in Taiwan area. Atmos Environ 36:491–502CrossRefGoogle Scholar
  30. Lyamani H, Olmo F, Alados-Arboledas L (2005) Saharan dust outbreak over southeastern Spain as detected by sun photometer. Atmos Environ 39:7276–7284Google Scholar
  31. Marcazzan GM, Vaccaro S, Valli G, Vecchi R (2001) Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35:4639–4650CrossRefGoogle Scholar
  32. McTainsh G, Lynch A, Tews E (1998) Climatic controls upon dust storm occurrence in eastern Australia. J Arid Environ 39:457–466CrossRefGoogle Scholar
  33. Mehta S et al (2013) Air pollution and admissions for acute lower respiratory infections in young children of Ho Chi Minh City Air Quality. Atmos Health 6:167–179CrossRefGoogle Scholar
  34. Middleton NJ (1984) Dust storms in Australia: frequency, distribution and seasonality. Search 15:46–47Google Scholar
  35. Offenberg JH, Baker JE (2000) Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres. Atmos Environ 34:1509–1517. doi: 10.1016/S1352-2310(99)00412-4 CrossRefGoogle Scholar
  36. Ostro B, Chestnut L, Vichit-Vadakan N, Laixuthai A (1999) The impact of particulate matter on daily mortality in Bangkok, Thailand. J Air Waste Manag Assoc 49(SPEC. ISS.):100–107Google Scholar
  37. Radhi M, Box MA, Box GP, Mitchell RM, Cohen DD, Stelcer E, Keywood MD (2010a) Optical, physical and chemical characteristics of Australian continental aerosols: Results from a field experiment. Atmos Chem Phys 10:5925–5942CrossRefGoogle Scholar
  38. Radhi M, Box MA, Box GP, Mitchell RM, Cohen DD, Stelcer E, Keywood MD (2010b) Size-resolved mass and chemical properties of dust aerosols from Australia’s Lake Eyre Basin. Atmos Environ 44:3519–3528CrossRefGoogle Scholar
  39. Ragosta M, Caggiano R, D’Emilio M, Sabia S, Trippetta S, Macchiato M (2006) PM10 and heavy metal measurements in an industrial area of southern Italy. Atmos Res 81:304–319CrossRefGoogle Scholar
  40. Santamaria J, Fernández M, Mendez J, Bomboi M (1990) Particle size distribution of metals in the atmosphere of Madrid (Spain) Freseniu’s. J Anal Chem 337:362–365CrossRefGoogle Scholar
  41. Spurny KR (1996) Aerosol air pollution its chemistry and size dependent health effects. J Aerosol Sci 27:S473–S474CrossRefGoogle Scholar
  42. Stefanski R, Sivakumar M (2009) Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS. In: IOP Conference Series: Earth and Environmental Science. vol 1. IOP Publishing, p 012016Google Scholar
  43. Strong CL, Parsons K, McTainsh GH, Sheehan A (2011) Dust transporting wind systems in the lower Lake Eyre Basin, Australia: a preliminary study. Aeolian Res 2:205–214. doi: 10.1016/j.aeolia.2010.11.001 CrossRefGoogle Scholar
  44. Tozer PR (2012) The cost of red dawn to the NSW economy. 56th Conference on Australian Agricultural and Resource Economics Society, FremantleGoogle Scholar
  45. Tozer P, Leys J (2013) Dust storms—what do they really cost? Rangel J 35:131–142. doi: 10.1071/RJ12085 CrossRefGoogle Scholar
  46. Vanderstraeten P et al (2008) Dust storm originate from Sahara covering Western Europe: a case study. Atmos Environ 42:5489–5493. doi: 10.1016/j.atmosenv.2008.02.063 CrossRefGoogle Scholar
  47. Viidanoja J, Sillanpää M, Laakia J, Kerminen V-M, Hillamo R, Aarnio P, Koskentalo T (2002) Organic and black carbon in PM2.5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmos Environ 36:3183–3193. doi: 10.1016/S1352-2310(02)00205-4 CrossRefGoogle Scholar
  48. Wang X, Oenema O, Hoogmoed W, Perdok U, Cai D (2006) Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China. Catena 66:221–227CrossRefGoogle Scholar
  49. Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313CrossRefGoogle Scholar
  50. Watanabe M et al (2011) Correlation between Asian dust storms and worsening asthma in Western Japan. Allergol Int 60:267CrossRefGoogle Scholar
  51. Xie S, Yu T, Zhang Y, Zeng L, Qi L, Tang X (2005) Characteristics of PM10, SO2, NOx and O3 in ambient air during the dust storm period in Beijing. Sci Total Environ 345:153–164. doi: 10.1016/j.scitotenv.2004.10.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rupak Aryal
    • 1
  • Simon Beecham
    • 1
  • Mohammad Kamruzzaman
    • 1
  • Samantha Conner
    • 2
  • Byeong-Kyu Lee
    • 3
  1. 1.Centre for Water Management and Reuse, School of Natural and Built EnvironmentsUniversity of South AustraliaMawson LakesAustralia
  2. 2.Bureau of MeteorologyKent TownAustralia
  3. 3.School of Civil EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations