Skip to main content
Log in

A stability result of a Timoshenko beam system with a delay term in the internal fractional feedback

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this article, we consider the Timoshenko beam system with a delay term in the internal fractional feedback in a bounded domain:

$$\begin{aligned} \left\{ \begin{array}{ll} \rho _1 \varphi _{tt}-K\left( \varphi _{x}+\psi \right) _x=0, \\ \rho _2 \psi _{tt}-b\psi _{xx}+K \left( \varphi _x+\psi \right) +\mu _1 \psi _t+\mu _2\partial _{t}^{\alpha ,\beta }\psi (x,t-\tau )=0. \end{array} \right. \end{aligned}$$

Under a hypothesis between the weight of the delay term in the fractional feedback and the weight of the term without delay, using the energy method combined with the Faedo–Galerkin procedure, we prove the global existence of the solutions. Under the imposed constraints on the weights of the feedbacks and the wave speeds, general decay results of the energy are proved via suitable Lyapunov functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, C., Dorato, P., Benitez-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory system, ACC. San Francisco, pp. 3106–3107 (1993)

  2. Achouri, Z., Amroun, N., Benaissa, A.: The Euler–Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40, 3837–3854 (2017)

    Article  MathSciNet  Google Scholar 

  3. Adnane, A., Benaissa, A., Benomar, K.: Uniform stabilization for a Timoskenko beam system with delays in fractional order internal dampings. SeMA 80, 283–302 (2023)

    Article  MathSciNet  Google Scholar 

  4. Alabau-Boussouira, F.: Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. Nonlinear Differ. Equ. Appl. 14, 643–669 (2007)

    Article  MathSciNet  Google Scholar 

  5. Ammar-Khodja, F., Benabdallah, A., Muñnoz Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194, 82–115 (2003)

    Article  MathSciNet  Google Scholar 

  6. Aounallah, R., Benaissa, A., Zarai, A.: Blow-up of solutions for elastic Membrane equations with fractional boundary damping. Commun. Optim. Theory (2020) Article ID 10. https://doi.org/10.23952/cot.2020.10

  7. Aounallah, R., Boulaaras, S., Zarai, A., Cherif, B.: General decay and blow up of solution for a nonlinear wave equation with a fractional boundary damping. Math. Methods Appl. Sci. 43, 7175–7193 (2020)

    Article  MathSciNet  Google Scholar 

  8. Aounallah, R., Benaissa, A., Zarai, A.: Blow-up and asymptotic behavior for a wave equation with a time delay condition of fractional type. Rend. Circ. Mat. Palermo II. Ser 70, 1061–1081 (2021)

    Article  MathSciNet  Google Scholar 

  9. Benaissa, A., Benazzouz, S.: Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Z. Angew. Math. Phys. 68, 94 (2017). https://doi.org/10.1007/s00033-017-0836-2

    Article  MathSciNet  Google Scholar 

  10. Benaissa, A., Gaouar, S.: Exponential decay for the Lamè system with fractional time delays and boundary feedbacks. Appl. Math. E-Notes 21, 705–717 (2021)

    MathSciNet  Google Scholar 

  11. Benaissa, A., Benguessoum, A., Messaoudi, S.A.: Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the non-linear internal feedback. Int. J. Dyn. Syst. Differ. Equ. 5, 1–26 (2014)

    MathSciNet  Google Scholar 

  12. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control. Optim. 24, 152–156 (1986)

    Article  MathSciNet  Google Scholar 

  13. Feng, D., Shi, D., Zhang, W.: Boundary feedback stabilization of Timoshenko beam with boundary dissipation. Sci. China Math. 41, 483–490 (1998)

    Article  MathSciNet  Google Scholar 

  14. Kim, J., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control. Optim. 25, 1417–1429 (1987)

    Article  MathSciNet  Google Scholar 

  15. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    Google Scholar 

  16. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  17. Mbodje, B.: Wave energy decay under fractional derivative controls. IMA J. Math. Control. Inf. 23, 237–257 (2006)

    Article  MathSciNet  Google Scholar 

  18. Munoz Rivera, J.E., Racke, R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341, 1068–1083 (2008)

    Article  MathSciNet  Google Scholar 

  19. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control. Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  Google Scholar 

  20. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int. Equ. 21, 935–958 (2008)

    MathSciNet  Google Scholar 

  21. Said-Houari, B., Laskri, Y.: A stability result of a Timoshenko system with a delay term in the internal feedback. Appl. Math. Comput. 217(6), 2857–2869 (2010)

    MathSciNet  Google Scholar 

  22. Soufyane, A., Wehbe, A.: Exponential stability for the Timoshenko beam by a locally distributed damping. Electron. J. Differ. Equ. 29, 1–14 (2003)

    Google Scholar 

  23. Suh, I.H., Bien, Z.: Use of time delay action in the controller design. IEEE Trans. Autom. Control. 25, 600–603 (1980)

    Article  Google Scholar 

  24. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. New York: Fields and Media Springer (2011). https://doi.org/10.1007/978-3-642-14003-7

  25. Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismaticbars. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  26. Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Frac. Calc. Appl. Anal. 17(2), 552–578 (2014). https://doi.org/10.2478/s13540-014-0185-1

    Article  MathSciNet  Google Scholar 

  27. Xu, C.Q., Yung, S.P., Li, L.K.: Stabilization of the wave system with input delay in the boundary control. ESAIM: Control Optim. Calc. Var. 12, 770–785 (2006)

Download references

Acknowledgements

The authors would like to thank very much the referee for their constructive comments and suggestions that helped to improve this article. We thank Directorate-General for Scientific Researchand Technological Development in Algeria (DGRSDT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhouane Aounallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aounallah, R. A stability result of a Timoshenko beam system with a delay term in the internal fractional feedback. J. Pseudo-Differ. Oper. Appl. 15, 45 (2024). https://doi.org/10.1007/s11868-024-00615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-024-00615-0

Keywords

Mathematics Subject Classification

Navigation