Abstract
We extend results obtained by Francfort (An introduction to H-measures and their applications. Variational problems in materials science. Birkhäuser, Basel, pp 85–110, 2006) to parabolic H-measures developed by Antonić and Lazar (J Funct Anal 265:1190–1239, 2013). The well known theory of pseudodifferential operators is extended to parabolic classes of symbols and operators and used to obtain results applicable to a wide class of partial differential equations. The main result is the propagation principle which is then applied to the Schrödinger equation and the vibrating plate equation.
This is a preview of subscription content, access via your institution.
References
Antonić, N.: H-measures applied to symmetric systems. Proc. R. Soc. Edinb. 126A, 1133–1155 (1996)
Antonić, N., Lazar, M.: H-measures and variants applied to parabolic equations. J. Math. Anal. Appl. 343, 207–225 (2008)
Antonić, N., Lazar, M.: Parabolic variant of H-measures in homogenisation of a model problem based on Navier–Stokes equation. Nonlinear Anal. B: Real World Appl. 11, 4500–4512 (2010)
Antonić, N., Lazar, M.: Parabolic H-measures. J. Funct. Anal. 265, 1190–1239 (2013)
Antonić, N., Mitrović, D.: \(H\)-distributions: an extension of \(H\)-measures to a \({\rm L}^p-{\rm L}^q\) setting. Abstr. Appl. Anal. 2011 Article ID 901084, 12 (2011)
Bényi, Á., Bownik, M.: Anisotropic classes of homogeneous pseudodifferential symbols. Stud. Math. 200(1), 41–66 (2010)
Boggiatto, P., Fabio, N.: Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb{R}^{n}\). J. Funct. Anal. 203(2), 305–320 (2003)
Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)
Dehman, B., Léautaud, M., Le Rousseau, J.: Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211(1), 113–187 (2014)
Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Aethods for Science and Technology, pp. 1–6. Springer, Berlin (1992)
Erceg, M., Ivec, I.: Second commutation lemma for fractional H-measures. J. Pseudo-Differ. Oper. Appl. 9(3), 589–613 (2018)
Francfort, G.A.: An Introduction to H-Measures and Their Applications. Variational Problems in Materials Science, pp. 85–110. Birkhäuser, Basel (2006)
Gérard, P.: Microlocal defect measures. Comm. Partial Diff. Eq. 16, 1761–1794 (1991)
Gérard, P.: Mesures semi-classiques et ondes de Bloch. Sem. EDP 1990–91 (exp. \(\text{n}^\circ \) XVI), Ecole Polytechnique, Palaiseau (1991)
Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV, Springer (1985–90)
Lazar, M.: Exploring limit behaviour of non-quadratic terms via H-measures. Application to small amplitude homogenisation. Appl. Anal. 96(16), 2832–2845 (2016)
Lazar, M., Zuazua, E.: Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. I 352(6), 497–502 (2014)
Lazar, M., Mitrović, D.: Velocity averaging—a general framework. Dyn. Partial Differ. Equ. 9, 239–260 (2012)
Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications I–III, Springer (1972–1973)
Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Revista Mat. Iberoamericana 9, 553–618 (1993)
Mitrović, D., Ivec, I.: A generalization of H-measures and application on purely fractional scalar conservation laws. Comm. Pure Appl. Anal. 10(6), 1617–1627 (2011)
Nicola, F.: Hörmander’s Inequality for anisotropic pseudo-differential operators. J. Partial Differ. Equ. 15(4), 49–64 (2002)
Xavier, S.R.: Elementary introduction to the theory of pseudodifferential operators. CRC Press, Boca Raton (1991)
Tartar, L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. 115A, 103–108 (1990)
Tsutsumi, C.: The Fundamental Solution for a Parabolic Pseudo-Differential Operator and Parametrices for Degenerate Operators. Proc. Jpn. Acad. 51, 103–108 (1975)
Man, W.: Wong: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific, Singapore (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The authors have been supported in part by Croatian Science Foundation under projects IP-2016-06-2468 ConDyS and IP-2018-01-2449 MiTPDE.
Rights and permissions
About this article
Cite this article
Ivec, I., Lazar, M. Propagation principle for parabolic H-measures. J. Pseudo-Differ. Oper. Appl. 11, 467–489 (2020). https://doi.org/10.1007/s11868-019-00289-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11868-019-00289-z
Keywords
- Parabolic H-measures
- Localisation principle
- Propagation principle
- The Schrödinger equation
- The vibrating plate equation
Mathematics Subject Classification
- 35K10
- 35K25
- 35S05
- 46G10