On compactness of commutator of multiplication and pseudodifferential operator


In this short note we show results on the compactness of the commutator of pseudodifferential operator and operator of multiplication in both \(\mathrm{L}^2\) and \(\mathrm{L}^p\) setting. Our results use the boundedness results of pseudodifferential operators by Hwang and Hwang-Lee, and the Krasnoselskij type interpolation lemma. We use the obtained results to construct a variant of microlocal defect functionals via pseudodifferential operators and derive its localisation principle.

This is a preview of subscription content, log in to check access.


  1. 1.

    Antonić, N., Erceg, M., Mišur, M.: Distributions of anisotropic order and applications. (In Preparation)

  2. 2.

    Antonić, N., Mišur, M., Mitrović, D.: On the First commutation lemma. (In Preparation)

  3. 3.

    Antonić, N., Mitrović, D.: H-distributions: an extension of H-measures to an \({\rm L}^p-{\rm L}^q\) setting. Abs. Appl. Anal. 2011, p 12 (2011). Article ID 901084

  4. 4.

    Conway, J.B.: A Course in Functional Analysis. Springer, Berlin (1997)

    Google Scholar 

  5. 5.

    Cordes, H.O.: On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. J. Funct. Anal. 18, 115–131 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Erceg, M., Mišur, M., Mitrović, D.: Velocity averaging and strong precompactness for degenerate parabolic equations with discontinuous flux. (In Preparation)

  7. 7.

    Gérard, P.: Microlocal defect measures. Commun. Partial Differ. Eq. 16, 1761–1794 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Grafakos, L.: Classical Fourier Analysis. Springer, Berlin (2008)

    Google Scholar 

  9. 9.

    Hwang, I.L.: The \({\rm L}^2\)-boundedness of pseudo-differential operators. Trans. Am. Math. Soc. 302, 55–76 (1987)

    Google Scholar 

  10. 10.

    Hwang, I.L., Lee, R.B.: The \({\rm L}^p\)-boundedness of pseudo-differential operators of class \(S_{0,0}\). Trans. Am. Math. Soc. 346, 489–510 (1994)

    Google Scholar 

  11. 11.

    Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Krasnosel’skij, M. A.: On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR 131: 246–248; translated as Soviet Math. Dokl. 1, 229–231 (1960). (In Russian)

  13. 13.

    Mišur, M.: H-distributions and compactness by compensation, PhD thesis, University of Zagreb, (2017)

  14. 14.

    Mišur, M., Mitrović, D.: On a generalisation of compensated compactness in the \({\rm L}^p-{\rm L}^q\) setting. J. Funct. Anal. 268, 1904–1927 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Panov, E.J.: Ultra-parabolic H-measures and compensated compactness. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 47–62 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Persson, A.: Compact linear mappings between interpolation spaces. Ark. Mat. 5, 215–219 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Rindler, F.: Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms. Arch. Ration. Mech. Anal. 215, 1–63 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Tartar, L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinburgh 115A, 193–230 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Tartar, L.: The general theory of homogenization: A personalized introduction. Springer, Berlin (2009)

    Google Scholar 

  20. 20.

    Tréves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, London (1967)

    Google Scholar 

Download references


The authors are grateful to the anonymous referee for his/her useful comments.

This work was supported in part by the Croatian Science Foundation under project 9780 WeConMApp, and by the project number 01–417 Advection–diffusion equations in highly heterogeneous media of the Montenegrin Ministry of Science. This work was initialised while the second author was visiting University of Zagreb in the framework of the Marie Curie FP7-PEOPLE-2011-COFUND project Micro-local defect functionals and applications.

Author information



Corresponding author

Correspondence to Marin Mišur.

Additional information

Dedicated to the memory of Todor V. Gramchev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mišur, M., Mitrović, D. On compactness of commutator of multiplication and pseudodifferential operator. J. Pseudo-Differ. Oper. Appl. 10, 121–131 (2019). https://doi.org/10.1007/s11868-018-0239-y

Download citation


  • Commutator
  • Compactness
  • Pseudodifferential operator

Mathematics Subject Classification

  • 35S05
  • 47G30