Skip to main content
Log in

Moduli space and deformations of special Lagrangian submanifolds with edge singularities

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Special Lagrangian submanifolds are submanifolds of a Calabi–Yau manifold calibrated by the real part of the holomorphic volume form. In this paper we use elliptic theory for edge-degenerate differential operators on singular manifolds to study the moduli space of deformations of special Lagrangian submanifolds with edge singularities. We obtain a general theorem describing the local structure of the moduli space. When the obstruction space vanishes the moduli space is a smooth, finite dimensional manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Pseudodifferential and Singular Integral Operators. An introduction with applications. De Gruyter Graduate Lectures. De Gruyter, Berlin (2012)

    Google Scholar 

  2. Agranovich, M.S.: Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer Monographs in Mathematics. Springer, Cham (2015). (Revised translation of the 2013 Russian original)

    Book  Google Scholar 

  3. Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston (1995). (Abstract linear theory)

    Book  Google Scholar 

  4. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  6. Bryant, R.L.: Some remarks on the geometry of austere manifolds. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society 21(2), 133–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conlon, R.J., Mazzeo, R., Rochon, F.: The moduli space of asymptotically cylindrical Calabi–Yau manifolds. Commun. Math. Phys. 338(3), 953–1009 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dreher, M., Witt, I.: Edge Sobolev spaces and weakly hyperbolic equations. Ann. Mat. Pura Appl. 180(4), 451–482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Egorov, Y.V., Schulze, B.-W.: Pseudo-Differential Operators, Singularities, Applications, volume 93 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1997)

    Book  Google Scholar 

  10. Harvey, R., Blaine Lawson Jr., H.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hunsicker, E., Mazzeo, R.: Harmonic forms on manifolds with edges. Int. Math. Res. Not. 52, 3229–3272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jarchow, H.: Locally Convex Spaces. B. G. Teubner, Stuttgart (1981). (Mathematische Leitfäden. [Mathematical Textbooks])

    Book  MATH  Google Scholar 

  13. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. II. Moduli spaces. Ann. Glob. Anal. Geom. 25(4), 301–352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Joyce, D.: Riemannian Holonomy Groups and Calibrated Geometry. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  15. Karigiannis, S., Leung, N.C.-H.: Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections. Ann. Glob. Anal. Geom. 42(3), 371–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities, volume 52 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

    Google Scholar 

  17. Lang, S.: Real and Functional Analysis, volume 142 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (1993)

    Book  Google Scholar 

  18. Lang, S.: Differential and Riemannian Manifolds, volume 160 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (1995)

    Book  Google Scholar 

  19. Lee, J.M.: Introduction to Smooth Manifolds. volume 218 of Graduate Texts in Mathematics. Springer, New York (2003)

    Book  Google Scholar 

  20. Lockhart, R.B., McOwen, R.C.: Elliptic differential operators on noncompact manifolds. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 12(3), 409–447 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Lockhart, R.: Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Am. Math. Soc. 301(1), 1–35 (1987)

    Article  MathSciNet  Google Scholar 

  22. Lauter, R., Seiler, J.: Pseudodifferential analysis on manifolds with boundary—a comparison of \(b\)-calculus and cone algebra. In: Gil, J.B., Grieser, D., Lesch, M. (eds.) Approaches to Singular Analysis (Berlin, 1999), volume 125 of Operator Theory Advances and Applications, pp. 131–166. Birkhäuser, Basel (2001)

  23. Marcel, K.: Sobolev Spaces of Vector-Valued Functions, Master Thesis. Faculty of Mathematics and Economics, Ulm University. Germany (2015). https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/abschlussarbeiten/MA_Marcel_Kreuter.pdf

  24. Marshall, S.: Deformations of Special Lagrangian submanifold, Ph.D Thesis. University of Oxford (2002). https://people.maths.ox.ac.uk/joyce/theses/MarshallDPhil.pdf

  25. Mazzeo, R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. McLean, R.C.: Deformations of calibrated submanifolds. Commun. Anal. Geom. 6(4), 705–747 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melrose, R.B.: The Atiyah–Patodi–Singer Index Theorem, volume 4 of Research Notes in Mathematics. A K Peters Ltd., Wellesley (1993)

    Google Scholar 

  28. Mazzeo, R., Vertman, B.: Elliptic theory of differential edge operators, II: Boundary value problems. Indiana Univ. Math. J. 63(6), 1911–1955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nazaikinskii, V.E., Savin, AYu., Schulze, B.-W., Sternin, BYu.: Elliptic Theory on Singular Manifolds, volume 7 of Differential and Integral Equations and Their Applications. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  30. Pacini, T.: Deformations of asymptotically conical special Lagrangian submanifolds. Pac. J. Math. 215(1), 151–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pacini, T.: Special Lagrangian conifolds, I: moduli spaces. Proc. Lond. Math. Soc. Third Ser. 107(1), 198–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schulze, B.-W.: Pseudo-Differential Operators on Manifolds with Singularities, volume 24 Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1991)

    Google Scholar 

  33. Schulze, B.-W.: Boundary Value Problems and Singular Pseudo-Differential Operators. Pure and Applied Mathematics (New York). Wiley, Chichester (1998)

    Google Scholar 

  34. Schulze, B.-W., Tarkhanov, N.: Elliptic complexes of pseudodifferential operators on manifolds with edges. In: Demuth, M., Schrohe, E., Schulze, B-W., Sjöstrand, J. (eds.) Evolution Equations, Feshbach Resonances, Singular Hodge Theory, volume 16 of Math. Top., pp. 287–431. Wiley, Berlin (1999)

  35. Swan, R.G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  36. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

This work started in a series of informal conversations the author had with Spiro Karigiannis (U. of Waterloo) during the Geometric Analysis Colloquium at Fields Institute in the Winter of 2014. The author thanks Spiro Karigiannis for his interest and becoming co-supervisor of this research project. The author thanks Frédéric Rochon at UQAM for the suggestions he made and the hospitality during the author’s visit to UQAM. The author was supported by the University of Western Ontario. Thanks to Tatyana Barron for all her support and assistance at UWO during this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josue Rosario-Ortega.

Additional information

The author was supported by the University of Western Ontario through a Western Graduate Research Scholarship. The results in this paper were obtained during his years as a graduate student at the department of Mathematics.

Appendices

Appendix 1: Vector-valued Sobolev embeddings

In Sects. 4 and 6 we used results from this “Appendix”. Most of the results here are based on vector-valued Sobolev embeddings. In the first section of this “Appendix” we recall the basics of vector-valued Sobolev embeddings and derive some consequences related to cone and edge-Sobolev spaces. In the second part we prove the estimate (11.1) following a similar result of Dreher and Witt [8]. This estimate implies the Banach Algebra property of our edge-Sobolev spaces on M, (11.39), and the regularity of the product of elements in \({\mathcal {W}}^{s,\gamma }(M)\), (11.40). In order to simplify the notation we will denote \(a\approx b\) and \(a\lesssim b\) if \(a=\kappa b\) or \(a\le \kappa b\) respectively with a positive constant \(\kappa \) depending only on s and \(\gamma \).

Let’s consider the classical Sobolev spaces \(W^{m,p}({\mathbb {R}}^{q})\) (see [5] for a detailed introduction). A classical tool in the analysis of partial differential equations on \({\mathbb {R}}^{q}\) is the set of Sobolev embeddings, see [5, section 9.3].

Theorem 10.1

Let \(m\in {\mathbb {Z}}\), \(m>1\) and \(p\in [1,+\infty ).\)

$$\begin{aligned}&\text {If}\quad \frac{q}{p}>m \quad \text {then }\quad W^{m,p}({\mathbb {R}}^{q})\hookrightarrow L^{k}({\mathbb {R}}^{q}) \quad \text {where } \frac{1}{q}=\frac{1}{p}-\frac{m}{q}. \end{aligned}$$
(10.1)
$$\begin{aligned}&\text {If}\quad \frac{q}{p}=m \quad \text {then }\quad W^{m,p}({\mathbb {R}}^{q})\hookrightarrow L^{k}({\mathbb {R}}^{q}) \quad \text {for all }\quad k\in [p,+\infty ). \end{aligned}$$
(10.2)
$$\begin{aligned}&\text {If}\quad \frac{q}{p}<m \quad \text {then }\quad W^{m,p}({\mathbb {R}}^{q})\hookrightarrow L^{\infty }({\mathbb {R}}^{q})\text { and}\quad W^{m,p}({\mathbb {R}}^{q})\hookrightarrow {\mathcal {C}}^{r}({\mathbb {R}}^{q}) \end{aligned}$$
(10.3)

where \(r=[s-\frac{q}{2}]\) i.e. r is the integer part of \(s-\frac{q}{2}\).

In this “Appendix” we are interested in the vector-valued version of this theorem i.e. given a Banach space \({\mathfrak {B}}\) we want a version for the \({\mathfrak {B}}\)-valued Sobolev spaces \(W^{m,p}({\mathbb {R}}^{q},{\mathfrak {B}}).\) There are many books and monographs dealing with vector-valued spaces of all kinds like \(L^{p}({\mathbb {R}}^{q},{\mathfrak {B}}),{\mathcal {C}}^{k}({\mathbb {R}}^{q},{\mathfrak {B}})\) and \({\mathcal {S}}({\mathbb {R}}^{q},{\mathfrak {B}})\), see [3, 12, 36]. In many cases they work in the more general context where \({\mathfrak {B}}\) is a Fréchet or locally convex Hausdorff space. For our specific purposes we follow closely [23]. Here Kreuter analyzes carefully the validity of Theorem 10.1 for the spaces \(W^{m,p}({\mathbb {R}}^{q},{\mathfrak {B}})\) where \({\mathfrak {B}}\) is a Banach space.

Recall that the vector-valued space of distributions is defined as the space of continuous operators from \(C^{\infty }_{0}({\mathbb {R}}^{q})\) to \({\mathfrak {B}}\) i.e. we have \({\mathcal {D'}}({\mathbb {R}}^{q},{\mathfrak {B}}):={\mathcal {L}}(C^{\infty }_{0}({\mathbb {R}}^{q}),{\mathfrak {B}}).\) The vector-valued \(L^{p}\)-spaces, \(L^{p}({\mathbb {R}}^{q},{\mathfrak {B}})\), are defined by means of the Bochner integral. The Bochner integral is constructed by means of \({\mathfrak {B}}\)-valued step functions in a similar way to the standard Lebesgue integral. See [1, Appendix A.4] for details. The vector-valued \({\mathcal {C}}^{k}\)-spaces, \({\mathcal {C}}^{k}({\mathbb {R}}^{q},{\mathfrak {B}})\), are defined with respect to the Fréchet derivative. The vector-valued Sobolev space is defined by

$$\begin{aligned} W^{m,p}({\mathbb {R}}^{q},{\mathfrak {B}}):=\left\{ f\in L^{p}({\mathbb {R}}^{q},{\mathfrak {B}}):\partial ^{\alpha }f\in L^{p}({\mathbb {R}}^{q},{\mathfrak {B}}) \quad \forall \quad \left| \alpha \right| \le m \right\} \end{aligned}$$
(10.4)

where the derivatives of f are taken in the distribution sense i.e. weak derivatives.

Here we recall the definition of the Radon-Nikodym property and some results related to it. It turns out that the key property that \({\mathfrak {B}}\) must satisfy in order to have vector-valued Sobolev embeddings for \(W^{m,p}({\mathbb {R}}^{q},{\mathfrak {B}})\) is the Radon-Nikodym property. For extended details the reader is referred to [23, chapter 2].

Definition 10.2

A Banach space \({\mathfrak {B}}\) has the Radon-Nikodym property if every Lipschitz continuous function \(f:I\longrightarrow {\mathfrak {B}}\) is differentiable almost everywhere, where \(I\subset {\mathbb {R}}\) is an arbitrary interval.

Proposition 10.3

Every reflexive space has the Radon-Nikodym property. In particular the spaces \(L^{p}({\mathbb {R}}^{q})\) with \(1<p<\infty \) and Hilbert spaces have the Radon-Nikodym property.

Corollary 10.4

The Sobolev embeddings in Theorem 10.1 are valid for the spaces \(W^{m,p}({\mathbb {R}}^{q},L^{p}({\mathbb {R}}^{q}))\) with \(1<p<\infty \) and \(W^{m,p}({\mathbb {R}}^{q},{\mathfrak {H}})\) where \({\mathfrak {H}}\) is a Hilbert space.

As a consequence of these vector-valued results we have the following applications to cone and edge-Sobolev spaces.

Proposition 10.5

If \(f\in {\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })\) (see (3.7)) and \(s>\frac{m+1}{2}\) then there exists \(C>0\) depending only on s and \(\gamma \) such that we have the following estimate on \((0,1)\times {\mathcal {X}}\)

$$\begin{aligned} \left| \partial ^{\alpha '}_{r}\partial ^{\alpha ''}_{\sigma }f(r,\sigma )\right| \le C\left\| f\right\| _{{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })}r^{\gamma -\frac{m+1}{2}-\left| \alpha '\right| } \end{aligned}$$
(10.5)

for all \( (r,\sigma )\in (0,1)\times {\mathcal {X}}\) and \(\left| \alpha '\right| +\left| \alpha ''\right| \le [s-\frac{m+1}{2}] .\)

Proof

We can work locally on \({\mathbb {R}}^{+}\times {\mathcal {U}}_{\lambda }\) where \(\lbrace {\mathcal {U}}_{\lambda }\rbrace \) is a finite open covering of \({\mathcal {X}}\), \(\lbrace \varphi _{\lambda }\rbrace \) is a subbordinate partition of unity and we consider \(\omega \varphi _{\lambda }f\). For simplicity we write just f instead of \(\omega \varphi _{\lambda }f\). At the end we take the smallest constant among those obtained for each element in the finite covering. Take \(f\in {\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })\) then by (3.6) we have \(S_{\gamma -\frac{m}{2}}f\in H^{s}({\mathbb {R}}^{1+m}).\) Therefore if \(s>\frac{m+1}{2}\) by (10.3) we have \(S_{\gamma -\frac{m}{2}}f\in L^{\infty }({\mathbb {R}}^{1+m})\) and

$$\begin{aligned} \sup _{(t,\sigma )\in {\mathbb {R}}^{1+m}}\left| \partial ^{\alpha }_{(t,\sigma )}(S_{\gamma -\frac{m}{2}}f)(t,\sigma )\right| \lesssim \left\| S_{\gamma -\frac{m}{2}}f\right\| _{H^{s}({\mathbb {R}}^{1+m})}\lesssim \left\| f\right\| _{{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })} \end{aligned}$$
(10.6)

for all \(\left| \alpha \right| \le [s-\frac{m+1}{2}]\). Now by definition (see (3.6))

$$\begin{aligned} (S_{\gamma -\frac{m}{2}}f)(t,x)=e^{-(\frac{1}{2}-(\gamma -\frac{m}{2}))t}f(e^{-t},x) \end{aligned}$$

with \(r=e^{-t}\). Thus (10.5) follows immediately. \(\square \)

In general, if \({\mathfrak {B}}\) is a Banach space and \(\lbrace \kappa _{\lambda }\rbrace _{\lambda \in {\mathbb {R}}^{+}}\in {\mathcal {C}}\left( {\mathbb {R}}^{+},{\mathcal {L}}({\mathfrak {B}})\right) \) is a continuous one-parameter group of invertible operators we have that there exist positive constants \(K,{\mathfrak {c}}\) such that

$$\begin{aligned} \left\| \kappa _{\lambda }\right\| _{{\mathcal {L}}({\mathfrak {B}})} \le \left\{ \begin{array}{ll} K\lambda ^{{\mathfrak {c}}}&{}\quad \text { for } \lambda \ge 1 \\ K\lambda ^{-{\mathfrak {c}}}&{}\quad \text { for } 0<\lambda \le 1 \end{array} \right. . \end{aligned}$$
(10.7)

See [33, proposition 1.3.1] for details.

When \({\mathfrak {B}}={\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })\) and \((\kappa _{\lambda }f)(r,\sigma )=\lambda ^{\frac{m+1}{2}}f(\lambda r,\sigma )\) we can use 3.6 to compute \(\left\| \kappa _{\lambda }\right\| _{{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })}=\lambda ^{\gamma }\) (see [32, section 1.1]). By the proof of proposition 1.3.1 in [33] it is easy to see that the constant \({\mathfrak {c}}\) in (10.7) depends only on the weight \(\gamma \). When \({\mathfrak {B}}={\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })\) we denote this constant by \({\mathfrak {c}}_{\gamma }\).

As a consequence of (10.7), we have the following continuous embeddings

$$\begin{aligned}&{\mathcal {W}}^{s,\gamma }({\mathcal {X}}^{\wedge }\times {\mathbb {R}}^{q}) \longrightarrow H^{s-{\mathfrak {c}}_{\gamma }}({\mathbb {R}}^{q},{\mathcal {K}}^{s,\gamma }({\mathcal {X}}^{\wedge })) \end{aligned}$$
(10.8)
$$\begin{aligned}&H^{s}({\mathbb {R}}^{q},{\mathcal {K}}^{s,\gamma }({\mathcal {X}}^{\wedge }))\longrightarrow {\mathcal {W}}^{s+{\mathfrak {c}}_{\gamma },\gamma }({\mathcal {X}}^{\wedge }\times {\mathbb {R}}^{q}) \end{aligned}$$
(10.9)

for all \(s\in {\mathbb {R}}\) where \(H^{s}({\mathbb {R}}^{q},{\mathcal {K}}^{s,\gamma }({\mathcal {X}}^{\wedge }))\) is the standard vector-valued Sobolev space with norm given by

$$\begin{aligned} \left\| f\right\| _{H^{s}({\mathbb {R}}^{q},{\mathcal {K}}^{s,\gamma }({\mathcal {X}}^{\wedge }))}:=\left( \,\,\int \limits _{{\mathbb {R}}^q}[\eta ]^{2s}\left\| {\mathcal {F}}_{u\rightarrow \eta }f(\eta )\right\| ^{2}_{{\mathcal {K}}^{s,\gamma }({\mathcal {X}}^{\wedge })}d\eta \right) ^{\frac{1}{2}}. \end{aligned}$$

The reader is refer to [33, proposition 1.3.1 and remark 1.3.21] for details.

Proposition 10.6

If \(g\in {\mathcal {W}}^{s,\gamma }(M)\) (see (3.9)) and \(s>\frac{m+1+q}{2}+{\mathfrak {c}}_{\gamma }\) where \({\mathfrak {c}}_{\gamma }\) is the constant defined in (10.7), then there exists \(C'>0\) depending only on s and \(\gamma \) such that we have the following estimate on \((0,1)\times {\mathcal {X}}\times {\mathcal {E}}\)

$$\begin{aligned} \left| \partial ^{\alpha '}_{r}\partial ^{\alpha ''}_{(\sigma ,u)}g(r,\sigma ,u)\right| \le C'\left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)}r^{\gamma -\frac{m+1}{2}-\left| \alpha '\right| } \end{aligned}$$
(10.10)

for all \( (r,\sigma ,u)\in (0,1)\times {\mathcal {X}}\times {\mathcal {E}}\) and \(\left| \alpha '\right| +\left| \alpha ''\right| \le [s-\frac{m+1}{2}].\)

Proof

We work locally on \((0,1)\times {\mathcal {U}}_{\lambda } \times \Omega _{j}\) as in Proposition 4.6 Sect. 4.4. Take \(g\in {\mathcal {W}}^{s,\gamma }(M)\). Again by (10.3) and \(s>\frac{m+1}{2}\) we have that for each \(u\in {\mathbb {R}}^{q}\)

$$\begin{aligned} (S_{\gamma -\frac{m}{2}}g)(u)\in H^{s}({\mathbb {R}}^{1+m}) \end{aligned}$$

and

$$\begin{aligned} \left\| (S_{\gamma -\frac{m}{2}}g)(u)\right\| _{L^{\infty }({\mathbb {R}}^{m+1})}\lesssim \left\| g(u)\right\| _{{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })}. \end{aligned}$$
(10.11)

Now (10.8) implies \(g\in H^{s-{\mathfrak {c}}_{\gamma }}({\mathbb {R}}^{q},{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge }))\) and \(s>\frac{q}{2}+{\mathfrak {c}}_{\gamma }\) together with (10.3) and Corollary 10.4 implies that we have a continuous embedding

$$\begin{aligned} H^{s-{\mathfrak {c}}_{\gamma }}({\mathbb {R}}^{q},{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge }))\hookrightarrow L^{\infty }({\mathbb {R}}^{q},{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })) \end{aligned}$$

as \({\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge })\) is a Hilbert space, see Definition 3.2 in Sect. 3.2.

Consequently

$$\begin{aligned} \left\| g\right\| _{L^{\infty }({\mathbb {R}}^{q},{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge }))}&=\sup _{u\in {\mathbb {R}}^{q}}\left\{ \left\| g(u)\right\| _{{\mathcal {H}}^{s,\gamma }} \right\} \end{aligned}$$
(10.12)
$$\begin{aligned}&\lesssim \left\| g\right\| _{H^{s-{\mathfrak {c}}_{\gamma }}({\mathbb {R}}^{q},{\mathcal {H}}^{s,\gamma }({\mathcal {X}}^{\wedge }))} \end{aligned}$$
(10.13)
$$\begin{aligned}&\lesssim \left\| g\right\| _{{\mathcal {W}}^{s,\gamma }({\mathcal {X}}^{\wedge }\times {\mathbb {R}}^{q})}. \end{aligned}$$
(10.14)

Hence (10.11), (10.14) and the change of variable \(r=e^{-t}\) implies (10.10) as in Proposition 10.5. \(\square \)

Appendix 2: Banach algebra property of edge-Sobolev spaces

In [8] Dreher and Witt used a variant of the edge-Sobolev spaces we use in this paper. In that paper they are interested in applications to weakly hyperbolic equations. Their spaces are defined on \((0,T)\times {\mathbb {R}}^{n}\). In this context they proved (proposition 4.1 in [8]) that their edge-Sobolev spaces have the structure of a Banach algebra. With some modifications and by using vector-valued Sobolev embeddings it is possible to extend their result to our edge-Sobolev spaces on M. This extension follows closely the proof of Witt and Dreher. For completeness we include the details of this extension in our context as we used the estimates (11.40) and (11.39) in Chapter 3 and 4.

Proposition 11.1

Let \(f,g\in {\mathcal {W}}^{s,\gamma }(M)\) with \(s\in {\mathbb {N}}\) and \(s>\frac{q+m+3}{2}\). Then \(fg\in {\mathcal {W}}^{s,2\gamma -\frac{m+1}{2}}(M)\) and we have the following estimate

$$\begin{aligned} \left\| fg\right\| _{{\mathcal {W}}^{s,2\gamma -\frac{m+1}{2}}(M)}\le C\left\| f\right\| _{{\mathcal {W}}^{s,\gamma }(M)}\left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)} \end{aligned}$$
(11.1)

with a constant \(C>0\) depending only on s and \(\gamma \).

Proof

By means of finite open covers and partitions of unity on \({\mathcal {X}}\) and \({\mathcal {E}}\) we need to estimate in terms of \(\omega \varphi _{\lambda }\phi _{j}f\) and \(\omega \varphi _{\lambda }\phi _{j}g\) as in Proposition 4.7 Sect. 4.4. To avoid unnecessary long expressions we will denote them simply by f and g. To save space in long expressions we use the notation \(\hat{f}\) to denote the Fourier transformation with respect to the conormal variable \(\eta \) i.e. \(\hat{f}={\mathcal {F}}_{u\rightarrow \eta }f.\) We will estimate on an open set \((0,\varepsilon )\times {\mathcal {U}}_{\lambda }\times \Omega _{j}\). Then the global estimate is obtained by adding these terms. Take \(f,g\in C^{\infty }_{0}(M)\). By definition of our edge-Sobolev (3.8) norm and by (3.6) we have

$$\begin{aligned}&\left\| fg\right\| ^{2}_{{\mathcal {W}}^{s,2\gamma -\frac{m+1}{2}}(M)} \approx \int \limits _{{\mathbb {R}}^{q}_{\eta }} [\eta ]^{2s}\left\| \kappa ^{-1}_{[\eta ]} {\mathcal {F}}_{u\rightarrow \eta }(fg)(\eta )\right\| _{{\mathcal {H}}^{s,2\gamma -\frac{m+1}{2}} ({\mathbb {R}}^{+}\times {\mathbb {R}}^{m})}^{2}d\eta \end{aligned}$$
(11.2)
$$\begin{aligned}&\quad \approx \sum \limits _{\left| \alpha \right| \le s} \int \limits _{{\mathbb {R}}^{q}_{\eta }} \int \limits _{{\mathbb {R}}^{}_{t}}\int \limits _{{\mathbb {R}}^{m}_{\sigma }}[\eta ]^{2s-(m+1)}\Big |\partial ^{\alpha }\big (e^{-(\frac{m+1}{2}-\gamma )2t}{\mathcal {F}}_{u\rightarrow \eta }(fg)([\eta ]^{-1}e^{-t}, \end{aligned}$$
(11.3)
$$\begin{aligned}&\qquad \sigma ,\eta )\big )\Big |^{2} d\sigma dt d\eta \end{aligned}$$
(11.4)

Here we will estimate the term with \(\alpha =0\). The estimates on the other terms \(\alpha \ne 0\) are similar. For each term in (11.4) we have

$$\begin{aligned}&\int \limits _{{\mathbb {R}}^{q}_{\eta }}\int \limits _{{\mathbb {R}}^{}_{t}}\int \limits _{{\mathbb {R}}^{m}_{\sigma }} [\eta ]^{2s-(m+1)}\left| e^{-(\frac{m+1}{2}-\gamma )2t} {\mathcal {F}}_{u\rightarrow \eta }(fg)\right| ^{2}d\eta \end{aligned}$$
(11.5)
$$\begin{aligned}&\quad = \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }}e^{-(\frac{m+1}{2}-\gamma )4t} \left\| [\eta ]^{s-\frac{m+1}{2}}{\mathcal {F}}_{u\rightarrow \eta }(fg)\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}^{2}d\sigma dt. \end{aligned}$$
(11.6)

Now, the hypothesis \(s>\frac{q+m+3}{2}\) allows us to use lemma 4.6 in [8]. Basically, this lemma implies that for fixed \((t,\sigma )\) we have the following estimate

$$\begin{aligned}&\left\| \Lambda (\eta )\widehat{fg(t,\sigma )}(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}\le \left\| f(t,\sigma )(u)\right\| _{L^{\infty }({\mathbb {R}}^{q}_{u})}\cdot \left\| \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}\\&\quad +\left\| g(t,\sigma )(u)\right\| _{L^{\infty }({\mathbb {R}}^{q}_{u})}\cdot \left\| \Lambda (\eta ) \hat{f}(r,\sigma )(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}\\&\quad +C_{0}\left\| \Lambda (\eta )\hat{f}(t,\sigma )(u)\slash [\eta ]\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}\cdot \left\| \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })} \end{aligned}$$

with \(C_0>0\) and \(\Lambda (\eta )=[\eta ]^{s-\frac{m+1}{2}}\).

Applying this estimate to (11.6) we have

$$\begin{aligned}&\left( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }} e^{-(\frac{m+1}{2}-\gamma )4t}\left\| [\eta ]^{s-\frac{m+1}{2}} {\mathcal {F}}_{u\rightarrow \eta }(fg)\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}^{2}d\sigma dt \right) ^{\frac{1}{2}} \end{aligned}$$
(11.7)
$$\begin{aligned}&\quad \le \Bigg ( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }} \bigg (e^{-(\frac{m+1}{2}-\gamma )2t}\left\| f(t,\sigma )(u)\right\| _{L^{\infty }({\mathbb {R}}^{q}_{u})} \cdot \left\| \Lambda (\eta ) \hat{g}(t,x)(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })}+\quad \end{aligned}$$
(11.8)
$$\begin{aligned}&\qquad + e^{-(\frac{m+1}{2}-\gamma )2t}\left\| g(t,\sigma )(u)\right\| _{L^{\infty } ({\mathbb {R}}^{q}_{u})}\cdot \left\| \Lambda (\eta ) \hat{f}(t,\sigma )(\eta )\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })} \end{aligned}$$
(11.9)
$$\begin{aligned}&\qquad + e^{-(\frac{m+1}{2}-\gamma )2t} C_{0}\left\| \Lambda (\eta )\hat{f}(t,\sigma )(u)\slash [\eta ]\right\| _{L^{2}({\mathbb {R}}^{q}_{\eta })} \end{aligned}$$
(11.10)
$$\begin{aligned}&\qquad \cdot \left\| \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| _{L^{2} ({\mathbb {R}}^{q}_{\eta })}\Bigg )^{2} d\sigma dt \Bigg )^{\frac{1}{2}}. \end{aligned}$$
(11.11)

By the Minkowski inequality we have that (11.7) is less or equal to the following terms

$$\begin{aligned}&\Bigg ( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }}e^{-(\frac{m+1}{2}-\gamma )4t}\left\| f(t,\sigma ) (u)\right\| ^{2}_{L^{\infty }({\mathbb {R}}^{q}_{u})}\cdot \left\| \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| ^{2}_{L^{2}({\mathbb {R}}^{q}_{\eta })}d\sigma dt \Bigg )^{\frac{1}{2}} \end{aligned}$$
(11.12)
$$\begin{aligned}&\quad + \Bigg ( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }}e^{-(\frac{m+1}{2}-\gamma )4t}\left\| g(t,\sigma ) (u)\right\| ^{2}_{L^{\infty }({\mathbb {R}}^{q}_{u})}\cdot \left\| \Lambda (\eta ) \hat{f}(t,\sigma )(\eta )\right\| ^{2}_{L^{2}({\mathbb {R}}^{q}_{\eta })}d\sigma dt \Bigg )^{\frac{1}{2}} \end{aligned}$$
(11.13)
$$\begin{aligned}&\quad + \Bigg ( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }}e^{-(\frac{m+1}{2}-\gamma )4t} C_{0}\left\| \Lambda (\eta )\hat{f}(t,\sigma )(u)\slash [\eta ]\right\| ^{2}_{L^{2}({\mathbb {R}}^{q}_{\eta })} \end{aligned}$$
(11.14)
$$\begin{aligned}&\quad \cdot \left\| \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| ^{2}_{L^{2}({\mathbb {R}}^{q}_{\eta })} d\sigma dt \Bigg )^{\frac{1}{2}}, \end{aligned}$$
(11.15)

hence, by the inequality in (11.7), we have

$$\begin{aligned}&\left( \int \limits _{{\mathbb {R}}^{}_{t}} \int \limits _{{\mathbb {R}}^{m}_{\sigma }}e^{-(\frac{m+1}{2}-\gamma )4t} \left\| [\eta ]^{s-\frac{m+1}{2}}{\mathcal {F}}_{u\rightarrow \eta }(fg)\right\| _{L^{2} ({\mathbb {R}}^{q}_{\eta })}^{2}d\sigma dt \right) ^{\frac{1}{2}} \end{aligned}$$
(11.16)
$$\begin{aligned}&\quad \le \left\| e^{-(\frac{m+1}{2}-\gamma )t}f(t,\sigma ,u)\right\| ^{}_{_{L^{\infty } ({\mathbb {R}}^{m+1}\times {\mathbb {R}}^{q}_{u})}} \end{aligned}$$
(11.17)
$$\begin{aligned}&\qquad \cdot \left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| ^{}_{_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}} \end{aligned}$$
(11.18)
$$\begin{aligned}&\qquad + \left\| e^{-(\frac{m+1}{2}-\gamma )t}g(t,\sigma ,u)\right\| ^{}_{_{L^{\infty }({\mathbb {R}}^{m+1}\times {\mathbb {R}}^{q}_{u})}} \end{aligned}$$
(11.19)
$$\begin{aligned}&\qquad \cdot \left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta ) \hat{f}(t,\sigma )(\eta )\right\| ^{}_{_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}} \end{aligned}$$
(11.20)
$$\begin{aligned}&\qquad + C_{0}\left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta )\hat{f}(t,\sigma )(u)\slash [\eta ]\right\| ^{}_{_{L^{\infty }({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}} \end{aligned}$$
(11.21)
$$\begin{aligned}&\qquad \cdot \left\| e^{-(\frac{m+1}{2}-\gamma )t} \Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| ^{}_{_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}}. \end{aligned}$$
(11.22)

The edge-Sobolev norm of f and g written as in (11.6) implies that

$$\begin{aligned} \left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta ) \hat{g}(t,\sigma )(\eta )\right\| ^{}_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}\le \left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)} \end{aligned}$$
(11.23)

and

$$\begin{aligned} \left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta ) \hat{f}(t,\sigma )(\eta )\right\| ^{}_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))}\le \left\| f\right\| _{{\mathcal {W}}^{s,\gamma }(M)}, \end{aligned}$$
(11.24)

hence we only need to deal with the \(L^{\infty }\) terms.

To analyze the \(L^{\infty }\) terms recall that by hypothesis \(s>\frac{q}{2}\) so we have the standard continuous Sobolev embedding \(H^{s}({\mathbb {R}}^{q})\hookrightarrow L^{\infty }({\mathbb {R}}^{q})\). Consequently for fixed \((t,\sigma )\) we have

$$\begin{aligned} \left\| e^{-(\frac{m+1}{2}-\gamma )t}g(t,\sigma )(\eta ) \right\| ^{2}_{L^{\infty }({\mathbb {R}}^{q}_{u})}&\lesssim \left\| e^{-(\frac{m+1}{2}-\gamma )t}g(t,\sigma )(\eta ) \right\| ^{2}_{H^{s}({\mathbb {R}}^{q}_{u})} \end{aligned}$$
(11.25)
$$\begin{aligned}&=\left\| \langle \eta \rangle ^{s} e^{-(\frac{m+1}{2}-\gamma )t}\hat{g}(t,\sigma )(\eta ) \right\| ^{2}_{L^{2}({\mathbb {R}}^{q}_{\eta })}, \end{aligned}$$
(11.26)

therefore

$$\begin{aligned}&\left\| e^{-(\frac{m+1}{2}-\gamma )t}g(t,\sigma )(\eta ) \right\| ^{2}_{L^{\infty }({\mathbb {R}}^{m+1} \times {\mathbb {R}}^{q}_{u})} \end{aligned}$$
(11.27)
$$\begin{aligned}&\quad \lesssim \left\| \langle \eta \rangle ^{s} e^{-(\frac{m+1}{2}-\gamma )t}\ hat{g}(t,\sigma )(\eta ) \right\| ^{2}_{L^{\infty }({\mathbb {R}}^{m+1}, L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.28)
$$\begin{aligned}&\quad \lesssim \left\| \langle \eta \rangle ^{s} e^{-(\frac{m+1}{2}-\gamma )t} \hat{g}(t,\sigma )(\eta ) \right\| ^{2}_{W^{s,2}({\mathbb {R}}^{m+1}, L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.29)
$$\begin{aligned}&\quad =\sum _{\left| \beta \right| \le s} \left\| \langle \eta \rangle ^{s} \partial ^{\beta }_{(t,\sigma )}\Big ( e^{-(\frac{m+1}{2}-\gamma )t}\hat{g}(t,\sigma ) (\eta ) \Big )\right\| ^{2}_{L^{2}({\mathbb {R}}^{m+1}, L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.30)
$$\begin{aligned}&\quad \le \left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)}^{2}. \end{aligned}$$
(11.31)

In (11.29) we have used the vector-valued version of the standard Sobolev embedding (see Sect. 10). In the same way we obtain

$$\begin{aligned}&\left\| e^{-(\frac{m+1}{2}-\gamma )t}f(t,\sigma )(\eta ) \right\| ^{2}_{L^{\infty } ({\mathbb {R}}^{m+1}\times {\mathbb {R}}^{q}_{u})} \end{aligned}$$
(11.32)
$$\begin{aligned}&\quad \lesssim \left\| f\right\| _{{\mathcal {W}}^{s,\gamma }(M)}^{2}. \end{aligned}$$
(11.33)

Then (11.31) and (11.33) implies that (11.18) and (11.20) are bounded by

$$\begin{aligned} C(s,\gamma ) \left\| f\right\| _{{\mathcal {W}}^{s,\gamma }(M)}^{2} \left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)}^{2}. \end{aligned}$$
(11.34)

Thus the only term remaining is (11.22).

Again using the vector-valued Sobolev embedding we have

$$\begin{aligned}&\left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta )\hat{f}(t,\sigma ) (u)\slash [\eta ]\right\| ^{2}_{L^{\infty }({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.35)
$$\begin{aligned}&\quad \lesssim \left\| e^{-(\frac{m+1}{2}-\gamma )t}\Lambda (\eta )\hat{f} (t,\sigma )(u)\slash [\eta ]\right\| ^{2}_{W^{s,2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.36)
$$\begin{aligned}&\quad =\sum _{\left| \beta \right| \le s}\left\| \frac{\Lambda (\eta )}{ [\eta ]} \partial ^{\beta }_{(t,x)}\bigg ( e^{-(\frac{m+1}{2}-\gamma )t}\hat{f}(t,\sigma ) (u)\bigg )\right\| ^{2}_{L^{2}({\mathbb {R}}^{m+1},L^{2}({\mathbb {R}}^{q}_{\eta }))} \end{aligned}$$
(11.37)
$$\begin{aligned}&\quad \lesssim \left\| f\right\| ^{2}_{{\mathcal {W}}^{s,\gamma }(M)} \end{aligned}$$
(11.38)

as \(\left| \frac{\Lambda (\eta )}{[\eta ]}\right| ^{2}=[\eta ]^{2s-(m+1)}\cdot [\eta ]^{-2}\lesssim [\eta ]^{2s-(m+1)}.\) Thus (11.38) and (11.23) implies that (11.22) is bounded by (11.34). \(\square \)

Corollary 11.2

If \(s\in {\mathbb {N}}\) with \(s>\frac{q+m+3}{2}\) and \(\gamma \ge \frac{m+1}{2}\) then the edge Sobolev space \({\mathcal {W}}^{s,\gamma }(M)\) is a Banach algebra under point-wise multiplication i.e. given \(f,g\in {\mathcal {W}}^{s,\gamma }(M)\) we have

$$\begin{aligned} \left\| fg\right\| _{{\mathcal {W}}^{s,\gamma }(M)}\le C'\left\| f\right\| _{{\mathcal {W}}^{s,\gamma }(M)}\left\| g\right\| _{{\mathcal {W}}^{s,\gamma }(M)} \end{aligned}$$
(11.39)

with a constant \(C'\) depending only on s and \(\gamma \).

Proof

\(\square \)

By (11.1) we have \(fg\in {\mathcal {W}}^{s,2\gamma -\frac{m+1}{2}}\). Note that \(\gamma \ge \frac{m+1}{2}\) if and only if \(2\gamma -\frac{m+1}{2}\ge \gamma \) from which the corollary follows immediately.

Corollary 11.3

Let \(f,g\in {\mathcal {W}}^{s,\gamma }(M)\) such that \(s\in {\mathbb {N}}\) with \(s>\frac{q+m+3}{2}\) and \(\gamma >\frac{m+1}{2}\). Then

$$\begin{aligned} f g\in {\mathcal {W}}^{s,\gamma +\beta }(M) \end{aligned}$$
(11.40)

for \(\beta >0\) given by \(\beta =\gamma -\frac{m+1}{2}\).

Proof

By (11.1) we have \(fg\in {\mathcal {W}}^{s,2\gamma -\frac{m+1}{2}}\). Moreover \(\gamma >\frac{m+1}{2}\) implies \(2\gamma -\frac{m+1}{2}=\gamma +\beta \) with \(\beta =\gamma -\frac{m+1}{2}>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosario-Ortega, J. Moduli space and deformations of special Lagrangian submanifolds with edge singularities. J. Pseudo-Differ. Oper. Appl. 9, 301–363 (2018). https://doi.org/10.1007/s11868-017-0202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-017-0202-3

Keywords

Mathematics Subject Classification

Navigation