Skip to main content

Weighted Morrey and weighted fractional Sobolev–Morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols

Abstract

In this paper, we study the boundedness results for a large class of pseudo-differential operators with smooth symbols on weighted Morrey and Weighted fractional Sobolev–Morrey spaces, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Calderón, A.P.: Lebesgue Spaces of Differentiable Functions and Distributions, Proc. Sympos. Pure Math., vol. 4. Amer. Math. Soc., Providence (1961)

  3. 3.

    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Hunt, R.A., Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282(2), 219–231 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Soc. 165, 207–226 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for fractional integrals. Trans. Am. Soc. 192, 261–274 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  11. 11.

    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Gurbuz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurbuz, F. Weighted Morrey and weighted fractional Sobolev–Morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols. J. Pseudo-Differ. Oper. Appl. 7, 595–607 (2016). https://doi.org/10.1007/s11868-016-0158-8

Download citation

Keywords

  • Weighted Morrey Space
  • Weighted fractional Sobolev–Morrey Space
  • Maximal operator
  • Pseudo-differential Operator
  • \(A_{p}\) weights

Mathematics Subject Classification

  • 42B20
  • 42B25
  • 46E35