Quantum mechanics in phase space: the Schrödinger and the Moyal representations

Abstract

We present a phase space formulation of quantum mechanics in the Schrödinger representation and derive the associated Weyl pseudo-differential calculus. We prove that the resulting theory is unitarily equivalent to the standard “configuration space” formulation and show that it allows for a uniform treatment of both pure and mixed quantum states. In the second part of the paper we determine the unitary transformation (and its infinitesimal generator) that maps the phase space Schrödinger representation into another (called Moyal) representation, where the wave function is the cross-Wigner function familiar from deformation quantization. Some features of this representation are studied, namely the associated pseudo-differential calculus and the main spectral and dynamical results. Finally, the relation with deformation quantization is discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bastos C., Bertolami O., Dias N.C., Prata J.N.: Weyl–Wigner formulation of noncommutative quantum mechanics. J. Math. Phys. 49, 072101 (2008)

    MathSciNet  Article  Google Scholar 

  2. 2

    Bastos C., Dias N.C., Prata J.N.: Wigner measures in noncommutative quantum mechanics. Commun. Math. Phys. 299(3), 709–740 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Bastos C., Bertolami O., Dias N.C., Prata J.N.: Phase-space noncommutative quantum cosmology. Phys. Rev. D 78, 023516 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4

    Bastos C., Bertolami O., Dias N.C., Prata J.N.: Black holes and phase-space noncommutativity. Phys. Rev. D 80, 124038 (2006)

    MathSciNet  Article  Google Scholar 

  5. 5

    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. I. Deformation of symplectic structures. Ann. Phys. 111, 6–110 (1978)

    Google Scholar 

  6. 6

    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. II Physical applications. Ann. Phys. 110, 111–151 (1978)

    MathSciNet  Google Scholar 

  7. 7

    Bertolami O., Rosa J.G., de Aragão C.M.L., Castorina P.P., Zappalà D.: Noncommutative gravitational quantum well. Phys. Rev. D (3) 72(2), 025010–025018 (2005)

    MathSciNet  Article  Google Scholar 

  8. 8

    Bopp F.: La mécanique quantique est-elle une mé canique statistique particulière?. Ann. Inst. H. Poincaré 15, 81–112 (1956)

    MathSciNet  MATH  Google Scholar 

  9. 9

    Bracken A., Watson P.: The quantum state vector in phase space and Gabor’s windowed Fourier transform. J. Phys. A: Math. Theor. 43, 395304 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10

    Carroll S.M., Harvey J.A., Kostelecký V.A., Lane C.D., Okamoto T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87(14), 141601–141605 (2001)

    MathSciNet  Article  Google Scholar 

  11. 11

    Dias N.C., de Gosson M., Luef F., Prata J.N.: A deformation quantization theory for non-commutative quantum mechanics. J. Math. Phys. 51, 072101 (2010)

    MathSciNet  Article  Google Scholar 

  12. 12

    Dias N.C., de Gosson M., Luef F., Prata J.N.: A pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces. J. Math. Pure Appl. 96, 423–445 (2011)

    MATH  Article  Google Scholar 

  13. 13

    Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    de Gosson M.: Extended Weyl calculus and application to the phase space Schrödinger equation. J. Phys. A Math. Gen. 38, L325–L329 (2005)

    MATH  Article  Google Scholar 

  15. 15

    de Gosson M.: Symplectic Geometry and Quantum Mechanics. Birkh äuser, Basel (2006)

    MATH  Google Scholar 

  16. 16

    de Gosson M.: Spectral properties of a class of generalized landau operators. Commun. Partial Differ. Oper. 33(11), 2096–2104 (2008)

    MATH  Article  Google Scholar 

  17. 17

    de Gosson, M.: Symplectic Methods in Harmonic Analysis. Applications to Mathematical Physics. Pseudo-Differential Operators, Theory and Applications. Birkhäuser, Basel (2011)

  18. 18

    de Gosson M., Luef F.: A new approach to the \({\star}\) -genvalue equation. Lett. Math. Phys. 85, 173–183 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    de Gosson M., Luef F.: Spectral and regularity properties of a pseudo-differential calculus related to Landau quantization. J. Pseudo-Differ. Oper. Appl. 1(1), 3–34 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    de Oliveira C.R.: Intermediate Spectral Theory and Quantum Dynamics. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  21. 21

    Gröchenig K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Google Scholar 

  22. 22

    Henneaux C.: Teitelboim, Quantization of Gauge Systems. Princeton University Press, NJ (1992)

    Google Scholar 

  23. 23

    Hörmander L.: The Weyl calculus of pseudo-differential operators. Commun. Pure Appl. Math. 32, 359–443 (1979)

    MATH  Article  Google Scholar 

  24. 24

    Maillard J.M.: On the twisted convolution product and the Weyl transformation of tempered distributions. J. Geom. Phys. 3(2), 232–261 (1986)

    MathSciNet  Article  Google Scholar 

  25. 25

    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin, 1st edn (1987); 2nd edn (2001) [original Russian edition in Nauka, Moskva, 1978]

  26. 26

    Stein E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, NJ (1993)

    MATH  Google Scholar 

  27. 27

    Torres-Vega G., Frederick J.: A quantum mechanical representation in phase space. J. Chem. Phys. 98(4), 3103–3120 (1993)

    Article  Google Scholar 

  28. 28

    Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29

    Voronov, B.L., Gitman, D.M., Tyutin, I.V.: Self-adjoint differential operator associated with self-adjoint differential expressions (2006). quant-ph/0603187

  30. 30

    Weyl, H.: Gruppentheorie und Quantenmechanik. Transl. by H.P. Robertson, The Theory of Groups and Quantum Mechanics. Dover, NY (1931) (reprinted 1950)

  31. 31

    Wong M.W.: Weyl Transforms. Springer, Berlin (1998)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maurice de Gosson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dias, N.C., de Gosson, M., Luef, F. et al. Quantum mechanics in phase space: the Schrödinger and the Moyal representations. J. Pseudo-Differ. Oper. Appl. 3, 367–398 (2012). https://doi.org/10.1007/s11868-012-0054-9

Download citation

Keywords

  • Phase Space
  • Unitary Transformation
  • Pseudodifferential Operator
  • Deformation Quantization
  • Heisenberg Algebra