A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms

Abstract

We prove an exact symplectic covariance formula under nonlinear Hamiltonian phase flows (f H t ) for the Wigner distribution \({W\psi}\) . A key role is played in our derivation by the linearized flow at the point where the Wigner distribution is calculated. We show that in general there does not exist any function \({\psi_{t}}\) such that \({W\psi\lbrack f_{t}^{H}(z)]=W\psi_{t}}\).

This is a preview of subscription content, access via your institution.

References

  1. 1

    Arnold, V.I.: Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 2nd edn. Springer, New York (1989)

    Google Scholar 

  2. 2

    de Gosson M.: Symplectic Geometry and Quantum Mechanics. Birkhäuser, Basel, series “Operator Theory: Advances and Applications” (subseries: “Advances in Partial Differential Equations”), vol. 166 (2006)

  3. 3

    Dirac, P.A.M.: The Principles of Quantum Mechanics, Oxford Science Publications, 4th revised edn. (1999)

  4. 4

    Dragt, A.J., Habib, S.: How Wigner Functions Transform Under Symplectic Maps. arXiv:quant-ph/9806056v (1998)

  5. 5

    Folland G.B.: Harmonic Analysis in Phase space, Annals of Mathematics studies. Princeton University Press, Princeton (1989)

    Google Scholar 

  6. 6

    Gröchenig K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2000)

    Google Scholar 

  7. 7

    Grossmann A.: Parity operators and quantization of δ-functions. Commun. Math. Phys. 48, 191–193 (1976)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Guillemin, V., Sternberg, S.: Geometric asymptotics. Math. Surveys Monographs 14, Am. Math. Soc., Providence R.I. (1978)

  9. 9

    Guillemin V., Sternberg S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  10. 10

    Hillery M., O’Connell R.F., Scully M.O., Wigner E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121–167 (1984)

    MathSciNet  Article  Google Scholar 

  11. 11

    Hudson R.L.: When is the Wigner quasi-probability density non-negative?. Rep. Math. Phys. 6, 249–252 (1974)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12

    Janssen A.J.E.M.: A note on Hudson’s theorem about functions with nonnegative Wigner distributions. Siam. J. Math. Anal. 15(1), 170–176 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13

    Leray, J.: Lagrangian analysis and quantum mechanics, a mathematical structure related to asymptotic expansions and the Maslov index. The MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  14. 14

    Littlejohn R.G.: The semiclassical evolution of wave packets. Phys Rep 138(4–5), 193–291 (1986)

    MathSciNet  Article  Google Scholar 

  15. 15

    Polterovich, L.: The geometry of the group of symplectic diffeomorphisms. In: Lectures in Mathematics, Birkhäuser (2001)

  16. 16

    Royer A.: Wigner functions as the expectation value of a parity operator. Phys. Rev. A 15, 449–450 (1977)

    MathSciNet  Article  Google Scholar 

  17. 17

    Stein E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  18. 18

    Wigner E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    MATH  Article  Google Scholar 

  19. 19

    Wong M.W.: Weyl Transforms. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maurice de Gosson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Gosson, M. A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms. J. Pseudo-Differ. Oper. Appl. 2, 91–99 (2011). https://doi.org/10.1007/s11868-011-0023-8

Download citation

Keywords

  • Hamiltonian Function
  • Canonical Transformation
  • Wigner Distribution
  • Weyl Operator
  • Linear Canonical Transformation