Opinion Statement
Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Similar content being viewed by others
Data availability
Not applicable.
References and Recommended Reading
Harrison CJ, Johansson B. Acute lymphoblastic leukemia. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. 2015;3:198–251.
PDQ Pediatric Treatment Editorial Board. Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®): Patient Version. 2022 Sep 2. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65947/.
Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clinic Proceedings. 2016;91(11):1645–66. https://doi.org/10.1016/j.mayocp.2016.09.010.
Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373:1541–52.
Hu Y, Zhang X, Zhang A, Hou Y, Liu Y, Li Q, Wang Y, Yu Y, Hou M, Peng J, Yang X. Global burden and attributable risk factors of acute lymphoblastic leukemia in 204 countries and territories in 1990–2019: estimation based on Global Burden of Disease Study 2019. Hematol Oncol. 2022;40(1):93–105.
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(9):1079–109.
DeAngelo DJ, Jabbour E, Advani A. Recent advances in managing acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2020;18(40):330–42.
Samra B, Jabbour E, Ravandi F, Kantarjian H, Short NJ. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J Hematol Oncol. 2020;13:1–7.
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Seminars in Cancer Biology. 2018;51:129–38. https://doi.org/10.1016/j.semcancer.2017.09.001.
Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute lymphoblastic leukemia immunotherapy treatment: now, next, and beyond. Cancers. 2023;15(13):3346. https://doi.org/10.3390/cancers15133346.
Chang JH, Poppe MM, Hua CH, Marcus KJ, Esiashvili N. Acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68:e28371.
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.
Rose-Inman H, Kuehl D. Acute leukemia. Hematology/Oncology Clinics. 2017;31(6):1011–28.
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62. https://doi.org/10.1016/s0140-6736(19)33018-1.
Malczewska M, Kośmider K, Bednarz K, Ostapińska K, Lejman M, Zawitkowska J. Recent advances in treatment options for childhood acute lymphoblastic leukemia. Cancers. 2022;14(8):2021.
Inaba H, Pui CH. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10(9):1926.
Sidhu J, Gogoi MP, Krishnan S, Saha V. Relapsed Acute Lymphoblastic Leukemia. Indian J Pediatr. 2023;21:1.
Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146–62.
Karol SE, Pei D, Smith CA, Liu Y, Yang W, Kornegay NM, Panetta JC, Crews KR, Cheng C, Finch ER, Inaba H. Comprehensive analysis of dose intensity of acute lymphoblastic leukemia chemotherapy. Haematologica. 2022;107(2):371.
Oskarsson T, Söderhäll S, Arvidson J, et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65:e26909.
van der Plas E, Qiu W, Nieman BJ, Yasui Y, Liu Q, Dixon SB, Kadan-Lottick NS, Weldon CB, Weil BR, Jacola LM, Gibson TM. Sex-specific associations between chemotherapy, chronic conditions, and neurocognitive impairment in acute lymphoblastic leukemia survivors: a report from the childhood cancer survivor study. JNCI: J Natl Cancer Inst. 2021;113(5):588–96.
Zhou C, Zhuang Y, Lin X, Michelson AD, Zhang A. Changes in neurocognitive function and central nervous system structure in childhood acute lymphoblastic leukaemia survivors after treatment: a meta-analysis. Br J Haematol. 2020;188(6):945–61.
Brown PA, Ji L, Xu X, Devidas M, Hogan LE, Borowitz MJ, Raetz EA, Zugmaier G, Sharon E, Bernhardt MB, Terezakis SA. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325(9):833–42.
Krasińka J, Trelińska J, Walenciak J, Dachowska-Kałwak I, Młynarski W. Central neurotoxicity as a complication in course of treatment of acute lymphoblastic leukemia in children: a single center experience. Acta Haematol Pol. 2023;54(3):145–53.
Silva RA, de Mendonça RM, dos Santos AS, Yajima JC, Marson FA, Brandalise SR, Levy CE. Induction therapy for acute lymphoblastic leukemia: incidence and risk factors for bloodstream infections. Support Care Cancer. 2022;30(1):695–702.
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2021;19(9):1079–109.
Düzenli Kar Y, Özdemir ZC, Töret E, Yılmaz E, Bör Ö. Precursor B-cell acute lymphoblastic leukemia presenting with isolated skin relapse: a pediatric case report. Egyptian Pediatr Assoc Gazette. 2023;71(1):1–4.
Bassan R, Pavoni C, Intermesoli T, Spinelli O, Tosi M, Audisio E, Marmont F, Cattaneo C, Borlenghi E, Cortelazzo S, Cavattoni I. Updated risk-oriented strategy for acute lymphoblastic leukemia in adult patients 18–65 years: NILG ALL 10/07. Blood Cancer J. 2020;10(11):119.
Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood, The Journal of the American Society of Hematology. 2020;136(16):1803–12.
Pierro J, Hogan LE, Bhatla T, Carroll WL. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 2017;17(8):725–36.
Lejman M, Kuśmierczuk K, Bednarz K, Ostapińska K, Zawitkowska J. Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia—Therapy and Toxicity Mechanisms. Int J Mol Sci. 2021;22(18):9827.
Pui CH. Precision medicine in acute lymphoblastic leukemia. Front Med. 2020;14:689–700.
Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff. 2018;37(5):694–701.
Kosorok MR, Laber EB. Precision medicine. Annu Rev Stat Appl. 2019;7(6):263–86.
Terwilliger T, Abdul-Hay MJ. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.
Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150(4):389–405.
Sousa DW, Ferreira FV, Félix FH, Lopes MV. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival. Rev Bras Hematol Hemoter. 2015;37:223–9.
Hunger SP, Loh ML, Whitlock JA, Winick NJ, Carroll WL, Devidas M, Raetz EA. COG Acute Lymphoblastic Leukemia Committee. Children’s Oncology Group’s 2013 blueprint for research: acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(6):957–63. https://doi.org/10.1002/pbc.24420.
Pui CH, Boyett JM, Relling MV, Harrison PL, Rivera GK, Behm FG, Sandlund JT, Ribeiro RC, Rubnitz JE, Gajjar A, Evans WE. Sex differences in prognosis for children with acute lymphoblastic leukemia. Am J Clin Oncol. 1999;17(3):818.
Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, Broadfield ZJ, Harris RL, Taylor KE, Gibson BE, Hann IM. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–62.
Tsuchida M, Ohara A, Manabe A, Kumagai M, Shimada H, Kikuchi A, Mori T, Saito M, Akiyama M, Fukushima T, Koike K. Long-term results of Tokyo Children’s Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984–1999. Leukemia. 2010;24(2):383–96.
Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia. 2010;24(2):285–97.
McNeer JL, Bleyer A. Acute lymphoblastic leukemia and lymphoblastic lymphoma in adolescents and young adults. Pediatr Blood Cancer. 2018;65(6):e26989.
Gupta S, Teachey DT, Chen Z, Rabin KR, Dunsmore KP, Larsen EC, Maloney KW, Mattano LA Jr, Winter SS, Carroll AJ, Heerema NA, Borowitz MJ, Wood BL, Carroll WL, Raetz EA, Winick NJ, Loh ML, Hunger SP, Devidas M. Sex-based disparities in outcome in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group report. Cancer. 2022;128(9):1863–70. https://doi.org/10.1002/cncr.34150.
Silverman L. Childhood acute lymphoblastic leukemia: currently applied prognostic factors. In: Siop education book international society of paediatric oncology. 2nd ed. Boston: SIOP; 2010. p. 18–24.
Winick N, Devidas M, Chen S, Maloney K, Larsen E, Mattano L, Borowitz MJ, Carroll A, Gastier-Foster JM, Heerema NA, Willman C. Impact of initial CSF findings on outcome among patients with National Cancer Institute standard-and high-risk B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2017;35(22):2527.
Ma M, Wang X, Tang J, Xue H, Chen J, Pan C, Jiang H, Shen S. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6:416–20.
Patrick K, Wade R, Goulden N, Mitchell C, Rowntree C, Hancock J, Hough RE, Vora AJ. Improved outcome for children and young people with T-acute lymphoblastic leukaemia: results of the UKALL 2003 trial. Blood. 2014;124(21):3702.
Szczepanski T, Van der Velden VH, Waanders E, Kuiper RP, Van Vlierberghe P, Gruhn B, Eckert C, Panzer-Grumayer R, Basso G, Cavé H, Stadt UZ. Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J Clin Oncol. 2011;29(12):1643–9.
Burns MA, Place AE, Stevenson KE, Gutiérrez A, Forrest S, Pikman Y, Vrooman LM, Harris MH, Weinberg OK, Hunt SK, O’Brien JE. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: Results from DFCI ALL Consortium Protocols 05–001 and 11–001. Pediatr Blood Cancer. 2021;68(1):e28719.
Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36(29):2926–34.
Dunsmore KP, Winter SS, Devidas M, Wood BL, Esiashvili N, Chen Z, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, Carroll AJ. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282.
Roberts KG. Genetics and prognosis of ALL in children vs adults. Hematology. 2018;2018(1):137–45. https://doi.org/10.1182/asheducation-2018.1.137.
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic biomarkers and their clinical implications in B-cell acute lymphoblastic leukemia in children. Int J Mol Sci. 2022;23(5):2755.
Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood J American Soc Hematol. 2015;125(26):3977–87.
Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood J American Soc Hematol. 2017;129(4):420–3.
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.
El Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2020;15:83–9.
Driessen EM, van Roon EH, Spijkers-Hagelstein JA, Schneider P, de Lorenzo P, Valsecchi MG, Pieters R, Stam RW. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937.
Fournier B, Balducci E, Duployez N, Clappier E, Cuccuini W, Arfeuille C, Caye-Eude A, Delabesse E, Bottollier-Lemallaz Colomb E, Nebral K, Chrétien ML. B-ALL With t (5; 14)(q31; q32); IGH-IL3 rearrangement and eosinophilia: a comprehensive analysis of a peculiar IGH-rearranged B-ALL. Front Oncol. 2019;10(9):1374.
Schwab C, Harrison CJ. Advances in B-cell precursor acute lymphoblastic leukemia genomics. HemaSphere. 2018;2(4). https://doi.org/10.1097/hs9.0000000000000053.
Roberts KG, Reshmi SC, Harvey RC, Chen IM, Patel K, Stonerock E, Jenkins H, Dai Y, Valentine M, Gu Z, Zhao Y. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood J American Soc Hematol. 2018;132(8):815–24.
Bardelli V, Arniani S, Pierini V, Di Giacomo D, Pierini T, Gorello P, Mecucci C, La Starza R. T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness. Genes. 2021;12(8):1118.
Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28.
Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20(3):e142–54.
Della Starza I, Chiaretti S, De Propris MS, Elia L, Cavalli M, De Novi LA, Soscia R, Messina M, Vitale A, Guarini A, Foà R. Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances. Front Oncol. 2019;7(9):726.
Maino E, Sancetta R, Viero P, Imbergamo S, Scattolin AM, Vespignani M, Bassan R. Current and future management of Ph/BCR-ABL positive ALL. Expert Rev Anticancer Ther. 2014;14(6):723–40.
Naka K, Hoshii T, Tadokoro Y, Hirao A. Molecular pathology of tumor-initiating cells: lessons from Philadelphia chromosome-positive leukemia. Pathol Int. 2011;61(9):501–8.
Abou Dalle I, Jabbour E, Short NJ, Ravandi F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Treat Options Oncol. 2019;20:1–3.
Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL–Positive acute lymphoblastic leukemia: a Phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24(3):460–6. https://doi.org/10.1200/jco.2005.03.2177.
Fujisawa S, Mizuta S, Akiyama H, Ueda Y, Aoyama Y, Hatta Y, Kakihana K, Dobashi N, Sugiura I, Onishi Y, Maeda T. Phase II study of imatinib-based chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Am J Hematol. 2017;92(4):367–74.
Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, Lazarus H, Luger SM, Marks DI, McMillan AK, Moorman AV. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood J American Soc Hematol. 2014;123(6):843–50.
Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, Lazarus H, Luger SM, Marks DI, McMillan AK, Moorman AV. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood J American Soc Hematol. 2014;123(6):843–50.
Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, Tura S, Fischer T, Deininger MW, Schiffer CA, Baccarani M. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoid leukemias. Blood J American Soc Hematol. 2002;100(6):1965–71.
Wassmann B, Pfeifer H, Scheuring UJ, Binckebanck A, Gökbuget N, Atta J, Brück P, Rieder H, Schoch C, Leimer L, Schwerdtfeger R. Early prediction of response in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) treated with imatinib. Blood. 2004;103(4):1495–8.
Martínez-Castillo M, Gómez-Romero L, Tovar H, Olarte-Carrillo I, García-Laguna A, Barranco-Lampón G, De la Cruz-Rosas A, Martínez-Tovar A, Hernández-Zavala A, Córdova EJ. Genetic alterations in the BCR-ABL1 fusion gene related to imatinib resistance in chronic myeloid leukemia. Leuk Res. 2023;1(131):107325.
Fei F, Stoddart S, Müschen M, Kim YM, Groffen J, Heisterkamp N. Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. Leukemia. 2010;24(4):813–20.
DeRemer DL, Ustun C, Natarajan K. Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008;30(11):1956–75.
Thomas X, Heiblig M. Diagnostic and treatment of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol Oncol. 2016;5(2):77–90.
Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, Dara S, Jorgensen J, Kebriaei P, Champlin R, Borthakur G. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia. Blood J American Soc Hematol. 2010;116(12):2070–7.
Wehrle J, von Bubnoff N. Ponatinib: A Third-Generation Inhibitor for the Treatment of CML. In: Martens U, editor. Small Molecules in Hematology. Recent Results in Cancer Research, vol. 212. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-91439-8_5.
Pulte ED, Chen H, Price LS, Gudi R, Li H, Okusanya OO, Ma L, Rodriguez L, Vallejo J, Norsworthy KJ, de Claro RA. FDA approval summary: revised indication and dosing regimen for ponatinib based on the results of the OPTIC trial. Oncologist. 2022;27(2):149–57.
Jabbour E, Short NJ, Ravandi F, Huang X, Daver N, DiNardo CD, Konopleva M, Pemmaraju N, Wierda W, Garcia-Manero G, Sasaki K. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):e618–27.
Wassmann B, Pfeifer H, Scheuring UJ, Binckebanck A, Gökbuget N, Atta J, Brück P, Rieder H, Schoch C, Leimer L, Schwerdtfeger R. Early prediction of response in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) treated with imatinib. Blood. 2004;103(4):1495–8.
DeBoer R, Koval G, Mulkey F, Wetzler M, Devine S, Marcucci G, Stone RM, Larson RA, Bloomfield CD, Geyer S, Mullighan CG. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665. Leuk Lymphoma. 2016;57(10):2298–306.
Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, Nishii K, Ueda Y, Takeuchi M, Miyawaki S, Maruta A. Karyotype at diagnosis is the major prognostic factor predicting relapse-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy. Haematologica. 2008;93(2):287–90.
Ravandi F, Jorgensen JL, Thomas DA, O’Brien S, Garris R, Faderl S, Huang X, Wen S, Burger JA, Ferrajoli A, Kebriaei P. Detection of MRD may predict the outcome of patients with Philadelphia chromosome–positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood J American Soc Hematol. 2013;122(7):1214–21.
Wassmann B, Pfeifer H, Stadler M, Bornhaüser M, Bug G, Scheuring UJ, Brück P, Stelljes M, Schwerdtfeger R, Basara N, Perz J. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2005;106(2):458–63.
Scheuring UJ, Pfeifer H, Wassmann B, Brück P, Gehrke B, Petershofen EK, Gschaidmeier H, Hoelzer D, Ottmann OG. Serial minimal residual disease (MRD) analysis as a predictor of response duration in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) during imatinib treatment. Leukemia. 2003;17(9):1700–6.
Cazzaniga G, De Lorenzo P, Alten J, Röttgers S, Hancock J, Saha V, Castor A, Madsen HO, Gandemer V, Cavé H, Leoni V. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018;103(1):107.
Soverini S, De Benedittis C, Polakova KM, Linhartova J, Castagnetti F, Gugliotta G, Papayannidis C, Mancini M, Klamova H, Salvucci M, Crugnola M. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients. Oncotarget. 2016;7(16):21982.
Iacobucci I, Lonetti A, Messa F, Cilloni D, Arruga F, Ottaviani E, Paolini S, Papayannidis C, Piccaluga PP, Giannoulia P, Soverini S. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood J American Soc Hemat. 2008;112(9):3847–55.
Churchman ML, Mullighan CG. Ikaros: exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol. 2017;1(46):1–8.
Sasaki Y, Kantarjian HM, Short NJ, Jain N, Sasaki K, Ravandi F, Konopleva M, Garcia-Manero G, Little L, Gumbs C, Zhao L. Prognostic significance of genetic alterations in patients with philadelphia chromosome-positive acute lymphoblastic leukemia treated with hyper-CVAD plus dasatinib or hyper-CVAD plus ponatinib. Blood. 2020;5(136):40–1.
Sasaki Y, Kantarjian HM, Short NJ, Wang F, Furudate K, Uryu H, Garris R, Jain N, Sasaki K, Ravandi F, Konopleva M, Garcia-Manero G, Little L, Gumbs C, Zhao L, Futreal PA, Takahashi K, Jabbour E. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022;36(5):1253–60. https://doi.org/10.1038/s41375-021-01496-8. Epub 2022 Feb 7. Erratum in: Leukemia. 2022;36(5):1448. https://doi.org/10.1038/s41375-022-01568-3.
Wang J, Jiang Q, Xu LP, Zhang XH, Chen H, Qin YZ, Ruan GR, Jiang H, Jia JS, Zhao T, Liu KY. Allogeneic stem cell transplantation versus tyrosine kinase inhibitors combined with chemotherapy in patients with philadelphia chromosome–positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018;24(4):741–50.
Ito Y, Ozawa H, Eto T, Miyamoto T, Kamimura T, Ogawa R, et al. IKZF1plus alterations are not associated with outcomes in Philadelphia-positive acute lymphoblastic leukemia patients enrolled in the FBMTG ALL/MRD2008 trial. Eur J Haematol. 2023;111(1):103–12. https://doi.org/10.1111/ejh.13972.
Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42.
Cortes JE, Kim DW, Pinilla-Ibarz JL, Le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J. A phase 2 trial of ponatinib in Philadelphia chromosome–positive leukemias. N Engl J Med. 2013;369(19):1783–96.
Wang H, Yang C, Shi T, Zhang Y, Qian J, Wang Y, Hu Y, Mao L, Ye X, Liu F, Xi Z. Venetoclax-ponatinib for T315I/compound-mutated Ph+ acute lymphoblastic leukemia. Blood Cancer J. 2022;12(1):20.
Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):1–1.
Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021;6(12):744823.
Pan K, Farrukh H, Chittepu VC, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41(1):1–21.
Zhang C, Liu J, Zhong JF, Zhang X. Engineering car-t cells. Biomarker research. 2017;5(1):1–6.
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res. 2018;37:1–23.
Xu X, Huang S, Xiao X, Sun Q, Liang X, Chen S, Zhao Z, Huo Z, Tu S, Li Y. Challenges and clinical strategies of CAR T-cell therapy for acute lymphoblastic leukemia: overview and developments. Front Immunol. 2021;10(11):569117.
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol. 2022;29(12):967754.
O’Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D, Gavin D, Lee S, Liu K, George B, Bryan W. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res. 2019;25(4):1142–6.
Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.
Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, Xie Z, Qiao X, Jiang H, Shao J, Yang F. Coadministration of CD19-and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–83.
Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood J American Soc Hematol. 2019;133(15):1652–63.
Zhang X, Yang J, Li J, Li W, Song D, Lu XA, Wu F, Li J, Chen D, Li X, Xu Z. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunology, Immunotherapy. 2022 ;71(3):689–703
Pillai V, Muralidharan K, Meng W, Bagashev A, Oldridge DA, Rosenthal J, Van Arnam J, Melenhorst JJ, Mohan D, DiNofia AM, Luo M. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv. 2019;3(22):3539–49.
Lamble AJ, Myers RM, Taraseviciute A, John S, Yates B, Steinberg SM, Sheppard J, Kovach AE, Wood B, Borowitz MJ, Stetler-Stevenson M. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023; 28;7(4):575–85
Dupouy S, Marchiq I, Derippe T, Almena-Carrasco M, Jozwik A, Fouliard S, Adimy Y, Geronimi J, Graham C, Jain N, Maus MV. Clinical pharmacology and determinants of response to UCART19, an allogeneic anti-CD19 CAR-T cell product, in adult B-cell acute lymphoblastic leukemia. Cancer Res Commun. 2022;2(11):1520–31.
Shahid S, Ramaswamy K, Flynn J, Mauguen A, Perica K, Park JH, Forlenza CJ, Shukla NN, Steinherz PG, Margossian SP, Boelens JJ. Impact of bridging chemotherapy on clinical outcomes of CD19-specific CAR T cell therapy in children/young adults with relapsed/refractory B cell acute lymphoblastic leukemia. Transplantation Cellular Ther. 2022;28(2):72-e1.
An F, Wang H, Liu Z, Wu F, Zhang J, Tao Q, Li Y, Shen Y, Ruan Y, Zhang Q, Pan Y. Influence of patient characteristics on chimeric antigen receptor T cell therapy in B-cell acute lymphoblastic leukemia. Nat Commun. 2020;11(1):5928.
Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11:1–5.
Chen M, Fu M, Wang A, Wu X, Zhen J, Gong M, Zhang X, Yue G, Du Q, Zhao W, Zhao Y. Cytoplasmic CD79a is a promising biomarker for B lymphoblastic leukemia follow up post CD19 CAR-T therapy. Leuk Lymphoma. 2022;63(2):426–34.
Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.
Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Optimizing the clinical impact of CAR-T cell therapy in B-cell acute lymphoblastic leukemia: looking back while moving forward. Front Immunol. 2021;28(12):765097.
Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood J American Soc Hematol. 2017;129(25):3322–31.
Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, Xie Z, Qiao X, Jiang H, Shao J, Yang F. Coadministration of CD19-and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–83.
Dekker L, Calkoen FG, Jiang Y, Blok H, Veldkamp SR, De Koning C, Spoon M, Admiraal R, Hoogerbrugge P, Vormoor B, Vormoor HJ. Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 2022;6(7):1969–76.
Gauthier J, Bezerra ED, Hirayama AV, Fiorenza S, Sheih A, Chou CK, Kimble EL, Pender BS, Hawkins RM, Vakil A, Phi TD. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood J American Soc Hematol. 2021;137(3):323–35.
Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood J American Soc Hematol. 2019;133(15):1652–63.
Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.
Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines. 2023;11(3):821.
Garcia-Prieto CA, Villanueva L, Bueno-Costa A, Davalos V, González-Navarro EA, Juan M, Urbano-Ispizua Á, Delgado J, Ortiz-Maldonado V, Del Bufalo F, Locatelli F. Epigenetic profiling and response to CD19 chimeric antigen receptor T-cell therapy in B-cell malignancies. JNCI: Journal of the National Cancer Institute. 2022 Mar 1;114(3):436–45
Piñeyroa JA, Cid J, Lozano M. Get off on the right foot: how to plan an efficient leukocytapheresis to collect T cells for CAR T-cell manufacturing. Transfus Med Hemother. 2023;50(2):98–104.
Jo T, Yoshihara S, Hada A, Arai Y, Kitawaki T, Ikemoto J, Onomoto H, Sugiyama H, Yoshihara K, Obi N, Matsui K. A clinically applicable prediction model to improve T cell collection in chimeric antigen receptor T cell therapy. Transplantation and Cellular Therapy. 2022 Jul 1;28(7):365-e1
An F, Wang H, Liu Z, Wu F, Zhang J, Tao Q, Li Y, Shen Y, Ruan Y, Zhang Q, Pan Y. Influence of patient characteristics on chimeric antigen receptor T cell therapy in B-cell acute lymphoblastic leukemia. Nat Commun. 2020;11(1):5928.
Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, Pequignot E, Gonzalez VE, Chen F, Finklestein J, Barrett DM. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.
Tedesco VE, Mohan C. Biomarkers for predicting cytokine release syndrome following CD19-targeted CAR T cell therapy. J Immunol. 2021;206(7):1561–8.
Zhou L, Fu W, Wu S, Xu K, Qiu L, Xu Y, Yan X, Zhang Q, Zhang M, Wang L, Hong R. Derivation and validation of a novel score for early prediction of severe CRS after CAR‐T therapy in haematological malignancy patients: A multi‐centre study. British Journal of Haematology. 2023
Yan Z, Zhang H, Cao J, Zhang C, Liu H, Huang H, Cheng H, Qiao J, Wang Y, Wang Y, Gao L. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 2021;23(12):611366.
Schultz LM, Baggott C, Prabhu S, Pacenta HL, Phillips CL, Rossoff J, Stefanski HE, Talano JA, Moskop A, Margossian SP, Verneris MR. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J Clin Oncol. 2022;40(9):945.
Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ, Hohl TM, Seo SK. Cytokine release syndrome grade as a predictive marker for infections in patients with relapsed or refractory B-cell acute lymphoblastic leukemia treated with chimeric antigen receptor T cells. Clin Infect Dis. 2018;67(4):533–40.
Tallantyre EC, Evans NA, Parry-Jones J, Morgan MP, Jones CH, Ingram W. Neurological updates: neurological complications of CAR-T therapy. J Neurol. 2021;268:1544–54.
Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71.
Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11:1–5.
Karschnia P, Jordan JT, Forst DA, Arrillaga-Romany IC, Batchelor TT, Baehring JM, Clement NF, Gonzalez Castro LN, Herlopian A, Maus MV, Schwaiblmair MH. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood J American Soc Hematol. 2019;133(20):2212–21.
Lee KJ, Chow V, Weissman A, Tulpule S, Aldoss I, Akhtari M. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag. 2016;25:1301–10.
Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clinical Pharmacol: Adv Appl. 2013;5(sup1):5–11.
Pulte ED, Vallejo J, Przepiorka D, Nie L, Farrell AT, Goldberg KB, McKee AE, Pazdur R. FDA supplemental approval: blinatumomab for treatment of relapsed and refractory precursor B-Cell Acute lymphoblastic leukemia. Oncologist. 2018;23(11):1366–71.
Markova IV, Bondarenko SN, Paina OV, Aubova BI, Kozhokar PV, Frolova AS, Barkhatov IM, Babenko EV, Alyanskiy AA, Ekushov KA, Gindina TL. Features of response to blinatumomab and inotuzumab ozogamicin therapy in patients with relapse/refractory B-cells acute lymphoblastic leukemia in real clinical practice. Cellular Ther Transplantation. 2020;9(1):47–52.
Markova I, Bondarenko SN, Paina OV, Osipova AA, Ayubova BI, Bakin EA, Smirnova AG, Babenko E, Semenova EV, Moiseev IS, Zander AR. Predictive model of response to blinatumomab therapy in children and adults with relapsed/refractory B-ALL. Blood. 2020;5(136):6–7.
Wei AH, Ribera JM, Larson RA, Ritchie D, Ghobadi A, Chen Y, Anderson A, Dos Santos CE, Franklin J, Kantarjian H. Biomarkers associated with blinatumomab outcomes in acute lymphoblastic leukemia. Leukemia. 2021 Aug;35(8):2220–31
Duell J, Dittrich M, Bedke T, Mueller T, Rasche L, Dandekar T, Einsele H, Topp MS. Crucial role of regulatory T cells in predicting the outcome of the T cell engaging antibody blinatumomab in relapsed and refractory B precursor ALL patients. Blood. 2014;124(21):2291.
Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, Rasche L, Hartmann E, Dandekar T, Einsele H, Topp MS. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31(10):2181–90.
Aldoss I, Otoukesh S, Zhang J, Mokhtari S, Ngo D, Mojtahedzadeh M, Al Malki MM, Salhotra A, Ali H, Aribi A, Sandhu KS. Extramedullary disease relapse and progression after blinatumomab therapy for treatment of acute lymphoblastic leukemia. Cancer. 2022;128(3):529–35.
Zhu M, Kratzer A, Johnson J, Holland C, Brandl C, Singh I, Wolf A, Doshi S. Blinatumomab pharmacodynamics and exposure–response relationships in relapsed/refractory acute lymphoblastic leukemia. J Clin Pharmacol. 2018;58(2):168–79.
Jung SH, Lee SR, Yang DH, Lee S, Yoon JH, Lee H, Bang SM, Koh Y, Park S, Kim DS, Yhim HY. Efficacy and safety of blinatumomab treatment in adult Korean patients with relapsed/refractory acute lymphoblastic leukemia on behalf of the Korean Society of Hematology ALL Working Party. Ann Hematol. 2019;30(98):151–8.
Queudeville M, Stein AS, Locatelli F, Ebinger M, Handgretinger R, Gökbuget N, Gore L, Zeng Y, Gokani P, Zugmaier G, Kantarjian HM. Low leukemia burden improves blinatumomab efficacy in patients with relapsed/refractory B‐cell acute lymphoblastic leukemia. Cancer. 2023 May 1;129(9):1384–93.
Martinelli G, Boissel N, Chevallier P, Ottmann O, Gökbuget N, Topp MS, Fielding AK, Rambaldi A, Ritchie EK, Papayannidis C, Sterling LR. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802.
Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, Diedrich H, Topp MS, Brüggemann M, Horst HA, Havelange V. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood J American Soc Hematol. 2018;131(14):1522–31.
Gökbuget N, Kantarjian HM, Brüggemann M, Stein AS, Bargou RC, Dombret H, Fielding AK, Heffner L, Rigal-Huguet F, Litzow M, O’Brien S. Molecular response with blinatumomab in relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Adv. 2019;3(20):3033–7.
Leotta S, Duminuco A, Mulè A, Tringali S, Mauro E, Vetro C, Maugeri C, Parisi M, Garibaldi B, Di Renzo N, Romano C. Minimal Residual Disease Negativity after Blinatumomab Is Predictive of Survival in B-Cell Acute Lymphoblastic Leukemia: Data from a Real-Life Study. Blood. 2022;140(Supplement 1):11854–5.
Essa MF, Abdellatif R, Elimam N, Ballourah W, Alsudairy R, Alkaiyat M, Alsultan A, Jastaniah W. Outcomes of blinatumomab based therapy in children with relapsed, persistent, or refractory acute lymphoblastic leukemia: a multicenter study focusing on predictors of response and post-treatment immunoglobulin production. Pediatr Hematol Oncol. 2022;39(7):613–28.
Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77:1603–10.
Yurkiewicz IR, Muffly L, Liedtke M. Inotuzumab ozogamicin: A CD22 mAb–drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des Dev Ther. 2018;24:2293–300.
Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Gökbuget N, O’Brien S, Wang K, Wang T, Paccagnella ML. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.
Brivio E, Chantrain CF, Gruber TA, Thano A, Rialland F, Contet A, Elitzur S, Dalla-Pozza L, Kállay KM, Li CK, Kato M. Inotuzumab ozogamicin in infants and young children with relapsed or refractory acute lymphoblastic leukaemia: a case series. Br J Haematol. 2021;193(6):1172–7.
Jabbour EJ, DeAngelo DJ, Stelljes M, Stock W, Liedtke M, Gökbuget N, O’Brien S, Wang T, Paccagnella ML, Sleight B, Vandendries E. Efficacy and safety analysis by age cohort of inotuzumab ozogamicin in patients with relapsed or refractory acute lymphoblastic leukemia enrolled in INO-VATE. Cancer. 2018;124(8):1722–32.
Jabbour EJ, Sasaki K, Ravandi F, Short NJ, Garcia-Manero G, Daver N, Kadia T, Konopleva M, Jain N, Cortes J, Issa GC. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2019;125(15):2579–86.
Jabbour E, O’Brien S, Huang X, Thomas D, Rytting M, Sasaki K, Cortes J, Garcia-Manero G, Kadia T, Ravandi F, Pierce S. Prognostic factors for outcome in patients with refractory and relapsed acute lymphocytic leukemia treated with inotuzumab ozogamicin, a CD 22 monoclonal antibody. Am J Hematol. 2015;90(3):193–6.
Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, O’Brien SM, Jabbour E, Wang T, Liang White J, Sleight B. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474–87.
Jabbour E, Gökbuget N, Advani A, Stelljes M, Stock W, Liedtke M, Martinelli G, O’Brien S, Wang T, Laird AD, Vandendries E. Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leuk Res. 2020;1(88):106283.
DeAngelo DJ, Advani AS, Marks DI, Stelljes M, Liedtke M, Stock W, Gökbuget N, Jabbour E, Merchant A, Wang T, Vandendries E. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer J. 2020;10(8):81.
Rafei H, Kantarjian HM, Sasaki K, Short NJ, Ravandi F, Huang X, Khoury JD, Wang SA, Jorgensen JL, Khouri IF, Kebriaei P. CD22 Expression Level As a Predictor of Survival in Patients (Pts) with Relapsed/Refractory (RR) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. Blood. 2020;5(136):23–5.
O’Brien MM, Ji L, Shah NN, Rheingold SR, Bhojwani D, Yuan CM, Xu X, Joanna SY, Harris AC, Brown PA, Borowitz MJ. Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children’s Oncology Group Protocol AALL1621. J Clin Oncol. 2022;40(9):956.
Kantarjian HM, Stock W, Cassaday RD, DeAngelo DJ, Jabbour E, O’Brien SM, Stelljes M, Wang T, Paccagnella ML, Nguyen K, Sleight B. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin Cancer Res. 2021;27(10):2742–54.
Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.
Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, York S, Ravandi F, Kwari M, Faderl S, Rios MB. Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.
Diaz-Flores E, Wintering A, Ishiyama K, Tamaki S, Tamaki C, Fandel J, Ji L, Wood B, Yuan CM, Shah NN, O’Brien MM. CD22 low/bcl-2 high expression identifies poor response to inotuzumab in relapsed/refractory acute lymphoblastic leukemia. Blood. 2021;23(138):614.
Jabbour E, Advani AS, Stelljes M, Stock W, Liedtke M, Gökbuget N, Martinelli G, O’Brien S, White JL, Wang T, Luisa PM. Prognostic implications of cytogenetics in adults with acute lymphoblastic leukemia treated with inotuzumab ozogamicin. Am J Hematol. 2019;94(4):408–16.
Kebriaei P, Cutler C, De Lima M, Giralt S, Lee SJ, Marks D, Merchant A, Stock W, Van Besien K, Stelljes M. Management of important adverse events associated with inotuzumab ozogamicin: expert panel review. Bone Marrow Transplant. 2018;53(4):449–56.
Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD, Merchant AA, Fujishima N, Uchida T, Calbacho M, Ejduk AA. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. The Lancet Haematology. 2017;4(8):e387-98.
Senapati J, Jabbour E, Short N, Jain N, Kebriaei P, Champlin RE, Khouri IF, Shpall EJ, Nasnas P, Bidikian A, Garris R. Predictors of veno-occlusive disease (VOD) of the liver in patients treated with inotuzumab ozogamicin (InO) containing regimen in B-cell acute lymphoblastic leukemia. Blood. 2022 Nov 15;140(Supplement 1):3155–7
Pierpont TM, Limper CB, Richards KL. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy. Front Oncol. 2018;4(8):163.
Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, Giles FJ, Verstovsek S, Wierda WG, Pierce SA, Shan J. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–80.
Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, Ravandi F, Verstovsek S, Jorgensen JL, Bueso-Ramos C, Andreeff M. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome–negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880.
Marks DI, Kirkwood AA, Rowntree CJ, Aguiar M, Bailey KE, Beaton B, Cahalin P, Castleton AZ, Clifton-Hadley L, Copland M, Goldstone AH. Addition of four doses of rituximab to standard induction chemotherapy in adult patients with precursor B-cell acute lymphoblastic leukaemia (UKALL14): a phase 3, multicentre, randomised controlled trial. The Lancet Haematology. 2022;9(4):e262-75.
Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, Chevallier P, Hunault M, Boissel N, Escoffre-Barbe M, Hess U. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.
Baek DW, Park HS, Sohn SK, Kim DY, Kim I, Ahn JS, Do YR, Lee SR, Eom HS, Lee WS, Kim SH. Rituximab plus multiagent chemotherapy for newly diagnosed CD20-positive acute lymphoblastic leukemia: a prospective phase II study. Korean J Intern Med. 2023;38(5):734.
Alduailej H, Kanfar S, Bakhit K, Raslan H, Alsaber A, Bashawri L, Aldayel A, Alanezi K. Outcome of CD20-positive adult B-cell acute lymphoblastic leukemia and the impact of rituximab therapy. Clin Lymphoma Myeloma Leuk. 2020;20(9):e560-8.
Acknowledgements
Not Applicable.
Funding
No funds, grants, or other support was received.
Author information
Authors and Affiliations
Contributions
The original idea was suggested by ZK and NK. The idea was then expanded by AE. The literature search for relevant articles were done by all authors. All authors substantially contributed in writing the original manuscript. The critical review and final draft was done by AE.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Code of availability
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khawaji, Z.Y., Khawaji, N.Y., Alahmadi, M.A. et al. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr. Treat. Options in Oncol. (2024). https://doi.org/10.1007/s11864-024-01237-w
Accepted:
Published:
DOI: https://doi.org/10.1007/s11864-024-01237-w