Skip to main content

Advertisement

Log in

Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL)

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References and Recommended Reading

  1. Harrison CJ, Johansson B. Acute lymphoblastic leukemia. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. 2015;3:198–251.

    Article  Google Scholar 

  2. PDQ Pediatric Treatment Editorial Board. Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®): Patient Version. 2022 Sep 2. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65947/.

  3. Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clinic Proceedings. 2016;91(11):1645–66. https://doi.org/10.1016/j.mayocp.2016.09.010.

    Article  PubMed  Google Scholar 

  4. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Zhang X, Zhang A, Hou Y, Liu Y, Li Q, Wang Y, Yu Y, Hou M, Peng J, Yang X. Global burden and attributable risk factors of acute lymphoblastic leukemia in 204 countries and territories in 1990–2019: estimation based on Global Burden of Disease Study 2019. Hematol Oncol. 2022;40(1):93–105.

    Article  Google Scholar 

  6. Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(9):1079–109.

    Article  CAS  PubMed  Google Scholar 

  7. DeAngelo DJ, Jabbour E, Advani A. Recent advances in managing acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2020;18(40):330–42.

    Article  Google Scholar 

  8. Samra B, Jabbour E, Ravandi F, Kantarjian H, Short NJ. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J Hematol Oncol. 2020;13:1–7.

    Article  Google Scholar 

  9. Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Seminars in Cancer Biology. 2018;51:129–38. https://doi.org/10.1016/j.semcancer.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  10. Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute lymphoblastic leukemia immunotherapy treatment: now, next, and beyond. Cancers. 2023;15(13):3346. https://doi.org/10.3390/cancers15133346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang JH, Poppe MM, Hua CH, Marcus KJ, Esiashvili N. Acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68:e28371.

    Article  PubMed  Google Scholar 

  12. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.

    Article  CAS  PubMed  Google Scholar 

  13. Rose-Inman H, Kuehl D. Acute leukemia. Hematology/Oncology Clinics. 2017;31(6):1011–28.

    Article  Google Scholar 

  14. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62. https://doi.org/10.1016/s0140-6736(19)33018-1.

    Article  CAS  PubMed  Google Scholar 

  15. Malczewska M, Kośmider K, Bednarz K, Ostapińska K, Lejman M, Zawitkowska J. Recent advances in treatment options for childhood acute lymphoblastic leukemia. Cancers. 2022;14(8):2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inaba H, Pui CH. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10(9):1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sidhu J, Gogoi MP, Krishnan S, Saha V. Relapsed Acute Lymphoblastic Leukemia. Indian J Pediatr. 2023;21:1.

    Google Scholar 

  18. Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146–62.

    Article  CAS  Google Scholar 

  19. Karol SE, Pei D, Smith CA, Liu Y, Yang W, Kornegay NM, Panetta JC, Crews KR, Cheng C, Finch ER, Inaba H. Comprehensive analysis of dose intensity of acute lymphoblastic leukemia chemotherapy. Haematologica. 2022;107(2):371.

    Article  CAS  PubMed  Google Scholar 

  20. Oskarsson T, Söderhäll S, Arvidson J, et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65:e26909.

    Article  Google Scholar 

  21. van der Plas E, Qiu W, Nieman BJ, Yasui Y, Liu Q, Dixon SB, Kadan-Lottick NS, Weldon CB, Weil BR, Jacola LM, Gibson TM. Sex-specific associations between chemotherapy, chronic conditions, and neurocognitive impairment in acute lymphoblastic leukemia survivors: a report from the childhood cancer survivor study. JNCI: J Natl Cancer Inst. 2021;113(5):588–96.

    Article  PubMed  Google Scholar 

  22. Zhou C, Zhuang Y, Lin X, Michelson AD, Zhang A. Changes in neurocognitive function and central nervous system structure in childhood acute lymphoblastic leukaemia survivors after treatment: a meta-analysis. Br J Haematol. 2020;188(6):945–61.

    Article  PubMed  Google Scholar 

  23. Brown PA, Ji L, Xu X, Devidas M, Hogan LE, Borowitz MJ, Raetz EA, Zugmaier G, Sharon E, Bernhardt MB, Terezakis SA. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325(9):833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krasińka J, Trelińska J, Walenciak J, Dachowska-Kałwak I, Młynarski W. Central neurotoxicity as a complication in course of treatment of acute lymphoblastic leukemia in children: a single center experience. Acta Haematol Pol. 2023;54(3):145–53.

    Article  Google Scholar 

  25. Silva RA, de Mendonça RM, dos Santos AS, Yajima JC, Marson FA, Brandalise SR, Levy CE. Induction therapy for acute lymphoblastic leukemia: incidence and risk factors for bloodstream infections. Support Care Cancer. 2022;30(1):695–702.

    Article  PubMed  Google Scholar 

  26. Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2021;19(9):1079–109.

    Article  CAS  PubMed  Google Scholar 

  27. Düzenli Kar Y, Özdemir ZC, Töret E, Yılmaz E, Bör Ö. Precursor B-cell acute lymphoblastic leukemia presenting with isolated skin relapse: a pediatric case report. Egyptian Pediatr Assoc Gazette. 2023;71(1):1–4.

    Google Scholar 

  28. Bassan R, Pavoni C, Intermesoli T, Spinelli O, Tosi M, Audisio E, Marmont F, Cattaneo C, Borlenghi E, Cortelazzo S, Cavattoni I. Updated risk-oriented strategy for acute lymphoblastic leukemia in adult patients 18–65 years: NILG ALL 10/07. Blood Cancer J. 2020;10(11):119.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood, The Journal of the American Society of Hematology. 2020;136(16):1803–12.

    CAS  Google Scholar 

  30. Pierro J, Hogan LE, Bhatla T, Carroll WL. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 2017;17(8):725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lejman M, Kuśmierczuk K, Bednarz K, Ostapińska K, Zawitkowska J. Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia—Therapy and Toxicity Mechanisms. Int J Mol Sci. 2021;22(18):9827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pui CH. Precision medicine in acute lymphoblastic leukemia. Front Med. 2020;14:689–700.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff. 2018;37(5):694–701.

    Article  Google Scholar 

  34. Kosorok MR, Laber EB. Precision medicine. Annu Rev Stat Appl. 2019;7(6):263–86.

    Article  Google Scholar 

  35. Terwilliger T, Abdul-Hay MJ. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150(4):389–405.

    Article  PubMed  Google Scholar 

  37. Sousa DW, Ferreira FV, Félix FH, Lopes MV. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival. Rev Bras Hematol Hemoter. 2015;37:223–9.

    Article  Google Scholar 

  38. Hunger SP, Loh ML, Whitlock JA, Winick NJ, Carroll WL, Devidas M, Raetz EA. COG Acute Lymphoblastic Leukemia Committee. Children’s Oncology Group’s 2013 blueprint for research: acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(6):957–63. https://doi.org/10.1002/pbc.24420.

    Article  PubMed  Google Scholar 

  39. Pui CH, Boyett JM, Relling MV, Harrison PL, Rivera GK, Behm FG, Sandlund JT, Ribeiro RC, Rubnitz JE, Gajjar A, Evans WE. Sex differences in prognosis for children with acute lymphoblastic leukemia. Am J Clin Oncol. 1999;17(3):818.

    Article  CAS  Google Scholar 

  40. Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, Broadfield ZJ, Harris RL, Taylor KE, Gibson BE, Hann IM. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–62.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuchida M, Ohara A, Manabe A, Kumagai M, Shimada H, Kikuchi A, Mori T, Saito M, Akiyama M, Fukushima T, Koike K. Long-term results of Tokyo Children’s Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984–1999. Leukemia. 2010;24(2):383–96.

    Article  CAS  PubMed  Google Scholar 

  42. Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia. 2010;24(2):285–97.

    Article  CAS  PubMed  Google Scholar 

  43. McNeer JL, Bleyer A. Acute lymphoblastic leukemia and lymphoblastic lymphoma in adolescents and young adults. Pediatr Blood Cancer. 2018;65(6):e26989.

    Article  PubMed  Google Scholar 

  44. Gupta S, Teachey DT, Chen Z, Rabin KR, Dunsmore KP, Larsen EC, Maloney KW, Mattano LA Jr, Winter SS, Carroll AJ, Heerema NA, Borowitz MJ, Wood BL, Carroll WL, Raetz EA, Winick NJ, Loh ML, Hunger SP, Devidas M. Sex-based disparities in outcome in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group report. Cancer. 2022;128(9):1863–70. https://doi.org/10.1002/cncr.34150.

    Article  PubMed  Google Scholar 

  45. Silverman L. Childhood acute lymphoblastic leukemia: currently applied prognostic factors. In: Siop education book international society of paediatric oncology. 2nd ed. Boston: SIOP; 2010. p. 18–24.

    Google Scholar 

  46. Winick N, Devidas M, Chen S, Maloney K, Larsen E, Mattano L, Borowitz MJ, Carroll A, Gastier-Foster JM, Heerema NA, Willman C. Impact of initial CSF findings on outcome among patients with National Cancer Institute standard-and high-risk B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2017;35(22):2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma M, Wang X, Tang J, Xue H, Chen J, Pan C, Jiang H, Shen S. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6:416–20.

    Article  PubMed  Google Scholar 

  48. Patrick K, Wade R, Goulden N, Mitchell C, Rowntree C, Hancock J, Hough RE, Vora AJ. Improved outcome for children and young people with T-acute lymphoblastic leukaemia: results of the UKALL 2003 trial. Blood. 2014;124(21):3702.

    Article  Google Scholar 

  49. Szczepanski T, Van der Velden VH, Waanders E, Kuiper RP, Van Vlierberghe P, Gruhn B, Eckert C, Panzer-Grumayer R, Basso G, Cavé H, Stadt UZ. Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J Clin Oncol. 2011;29(12):1643–9.

    Article  CAS  PubMed  Google Scholar 

  50. Burns MA, Place AE, Stevenson KE, Gutiérrez A, Forrest S, Pikman Y, Vrooman LM, Harris MH, Weinberg OK, Hunt SK, O’Brien JE. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: Results from DFCI ALL Consortium Protocols 05–001 and 11–001. Pediatr Blood Cancer. 2021;68(1):e28719.

    Article  CAS  PubMed  Google Scholar 

  51. Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36(29):2926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dunsmore KP, Winter SS, Devidas M, Wood BL, Esiashvili N, Chen Z, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, Carroll AJ. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roberts KG. Genetics and prognosis of ALL in children vs adults. Hematology. 2018;2018(1):137–45. https://doi.org/10.1182/asheducation-2018.1.137.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic biomarkers and their clinical implications in B-cell acute lymphoblastic leukemia in children. Int J Mol Sci. 2022;23(5):2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood J American Soc Hematol. 2015;125(26):3977–87.

    CAS  Google Scholar 

  56. Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood J American Soc Hematol. 2017;129(4):420–3.

    CAS  Google Scholar 

  57. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.

    Article  PubMed  Google Scholar 

  58. El Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2020;15:83–9.

    Article  PubMed  Google Scholar 

  59. Driessen EM, van Roon EH, Spijkers-Hagelstein JA, Schneider P, de Lorenzo P, Valsecchi MG, Pieters R, Stam RW. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fournier B, Balducci E, Duployez N, Clappier E, Cuccuini W, Arfeuille C, Caye-Eude A, Delabesse E, Bottollier-Lemallaz Colomb E, Nebral K, Chrétien ML. B-ALL With t (5; 14)(q31; q32); IGH-IL3 rearrangement and eosinophilia: a comprehensive analysis of a peculiar IGH-rearranged B-ALL. Front Oncol. 2019;10(9):1374.

    Article  Google Scholar 

  61. Schwab C, Harrison CJ. Advances in B-cell precursor acute lymphoblastic leukemia genomics. HemaSphere. 2018;2(4). https://doi.org/10.1097/hs9.0000000000000053.

  62. Roberts KG, Reshmi SC, Harvey RC, Chen IM, Patel K, Stonerock E, Jenkins H, Dai Y, Valentine M, Gu Z, Zhao Y. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood J American Soc Hematol. 2018;132(8):815–24.

    CAS  Google Scholar 

  63. Bardelli V, Arniani S, Pierini V, Di Giacomo D, Pierini T, Gorello P, Mecucci C, La Starza R. T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness. Genes. 2021;12(8):1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28.

    Article  PubMed  Google Scholar 

  65. Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20(3):e142–54.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Della Starza I, Chiaretti S, De Propris MS, Elia L, Cavalli M, De Novi LA, Soscia R, Messina M, Vitale A, Guarini A, Foà R. Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances. Front Oncol. 2019;7(9):726.

    Article  Google Scholar 

  67. Maino E, Sancetta R, Viero P, Imbergamo S, Scattolin AM, Vespignani M, Bassan R. Current and future management of Ph/BCR-ABL positive ALL. Expert Rev Anticancer Ther. 2014;14(6):723–40.

    Article  CAS  PubMed  Google Scholar 

  68. Naka K, Hoshii T, Tadokoro Y, Hirao A. Molecular pathology of tumor-initiating cells: lessons from Philadelphia chromosome-positive leukemia. Pathol Int. 2011;61(9):501–8.

    Article  CAS  PubMed  Google Scholar 

  69. Abou Dalle I, Jabbour E, Short NJ, Ravandi F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Treat Options Oncol. 2019;20:1–3.

    Article  Google Scholar 

  70. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL–Positive acute lymphoblastic leukemia: a Phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24(3):460–6. https://doi.org/10.1200/jco.2005.03.2177.

    Article  CAS  PubMed  Google Scholar 

  71. Fujisawa S, Mizuta S, Akiyama H, Ueda Y, Aoyama Y, Hatta Y, Kakihana K, Dobashi N, Sugiura I, Onishi Y, Maeda T. Phase II study of imatinib-based chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Am J Hematol. 2017;92(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  72. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, Lazarus H, Luger SM, Marks DI, McMillan AK, Moorman AV. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood J American Soc Hematol. 2014;123(6):843–50.

    CAS  Google Scholar 

  73. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, Lazarus H, Luger SM, Marks DI, McMillan AK, Moorman AV. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood J American Soc Hematol. 2014;123(6):843–50.

    CAS  Google Scholar 

  74. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, Tura S, Fischer T, Deininger MW, Schiffer CA, Baccarani M. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoid leukemias. Blood J American Soc Hematol. 2002;100(6):1965–71.

    CAS  Google Scholar 

  75. Wassmann B, Pfeifer H, Scheuring UJ, Binckebanck A, Gökbuget N, Atta J, Brück P, Rieder H, Schoch C, Leimer L, Schwerdtfeger R. Early prediction of response in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) treated with imatinib. Blood. 2004;103(4):1495–8.

    Article  CAS  PubMed  Google Scholar 

  76. Martínez-Castillo M, Gómez-Romero L, Tovar H, Olarte-Carrillo I, García-Laguna A, Barranco-Lampón G, De la Cruz-Rosas A, Martínez-Tovar A, Hernández-Zavala A, Córdova EJ. Genetic alterations in the BCR-ABL1 fusion gene related to imatinib resistance in chronic myeloid leukemia. Leuk Res. 2023;1(131):107325.

    Article  Google Scholar 

  77. Fei F, Stoddart S, Müschen M, Kim YM, Groffen J, Heisterkamp N. Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. Leukemia. 2010;24(4):813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. DeRemer DL, Ustun C, Natarajan K. Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008;30(11):1956–75.

    Article  CAS  PubMed  Google Scholar 

  79. Thomas X, Heiblig M. Diagnostic and treatment of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol Oncol. 2016;5(2):77–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, Dara S, Jorgensen J, Kebriaei P, Champlin R, Borthakur G. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia. Blood J American Soc Hematol. 2010;116(12):2070–7.

    CAS  Google Scholar 

  81. Wehrle J, von Bubnoff N. Ponatinib: A Third-Generation Inhibitor for the Treatment of CML. In: Martens U, editor. Small Molecules in Hematology. Recent Results in Cancer Research, vol. 212. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-91439-8_5.

    Chapter  Google Scholar 

  82. Pulte ED, Chen H, Price LS, Gudi R, Li H, Okusanya OO, Ma L, Rodriguez L, Vallejo J, Norsworthy KJ, de Claro RA. FDA approval summary: revised indication and dosing regimen for ponatinib based on the results of the OPTIC trial. Oncologist. 2022;27(2):149–57.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jabbour E, Short NJ, Ravandi F, Huang X, Daver N, DiNardo CD, Konopleva M, Pemmaraju N, Wierda W, Garcia-Manero G, Sasaki K. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):e618–27.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wassmann B, Pfeifer H, Scheuring UJ, Binckebanck A, Gökbuget N, Atta J, Brück P, Rieder H, Schoch C, Leimer L, Schwerdtfeger R. Early prediction of response in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) treated with imatinib. Blood. 2004;103(4):1495–8.

    Article  CAS  PubMed  Google Scholar 

  85. DeBoer R, Koval G, Mulkey F, Wetzler M, Devine S, Marcucci G, Stone RM, Larson RA, Bloomfield CD, Geyer S, Mullighan CG. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665. Leuk Lymphoma. 2016;57(10):2298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, Nishii K, Ueda Y, Takeuchi M, Miyawaki S, Maruta A. Karyotype at diagnosis is the major prognostic factor predicting relapse-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy. Haematologica. 2008;93(2):287–90.

    Article  PubMed  Google Scholar 

  87. Ravandi F, Jorgensen JL, Thomas DA, O’Brien S, Garris R, Faderl S, Huang X, Wen S, Burger JA, Ferrajoli A, Kebriaei P. Detection of MRD may predict the outcome of patients with Philadelphia chromosome–positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood J American Soc Hematol. 2013;122(7):1214–21.

    CAS  Google Scholar 

  88. Wassmann B, Pfeifer H, Stadler M, Bornhaüser M, Bug G, Scheuring UJ, Brück P, Stelljes M, Schwerdtfeger R, Basara N, Perz J. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2005;106(2):458–63.

    Article  CAS  PubMed  Google Scholar 

  89. Scheuring UJ, Pfeifer H, Wassmann B, Brück P, Gehrke B, Petershofen EK, Gschaidmeier H, Hoelzer D, Ottmann OG. Serial minimal residual disease (MRD) analysis as a predictor of response duration in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) during imatinib treatment. Leukemia. 2003;17(9):1700–6.

    Article  CAS  PubMed  Google Scholar 

  90. Cazzaniga G, De Lorenzo P, Alten J, Röttgers S, Hancock J, Saha V, Castor A, Madsen HO, Gandemer V, Cavé H, Leoni V. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018;103(1):107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Soverini S, De Benedittis C, Polakova KM, Linhartova J, Castagnetti F, Gugliotta G, Papayannidis C, Mancini M, Klamova H, Salvucci M, Crugnola M. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients. Oncotarget. 2016;7(16):21982.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Iacobucci I, Lonetti A, Messa F, Cilloni D, Arruga F, Ottaviani E, Paolini S, Papayannidis C, Piccaluga PP, Giannoulia P, Soverini S. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood J American Soc Hemat. 2008;112(9):3847–55.

    CAS  Google Scholar 

  93. Churchman ML, Mullighan CG. Ikaros: exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol. 2017;1(46):1–8.

    Article  Google Scholar 

  94. Sasaki Y, Kantarjian HM, Short NJ, Jain N, Sasaki K, Ravandi F, Konopleva M, Garcia-Manero G, Little L, Gumbs C, Zhao L. Prognostic significance of genetic alterations in patients with philadelphia chromosome-positive acute lymphoblastic leukemia treated with hyper-CVAD plus dasatinib or hyper-CVAD plus ponatinib. Blood. 2020;5(136):40–1.

    Google Scholar 

  95. Sasaki Y, Kantarjian HM, Short NJ, Wang F, Furudate K, Uryu H, Garris R, Jain N, Sasaki K, Ravandi F, Konopleva M, Garcia-Manero G, Little L, Gumbs C, Zhao L, Futreal PA, Takahashi K, Jabbour E. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022;36(5):1253–60. https://doi.org/10.1038/s41375-021-01496-8. Epub 2022 Feb 7. Erratum in: Leukemia. 2022;36(5):1448. https://doi.org/10.1038/s41375-022-01568-3.

  96. Wang J, Jiang Q, Xu LP, Zhang XH, Chen H, Qin YZ, Ruan GR, Jiang H, Jia JS, Zhao T, Liu KY. Allogeneic stem cell transplantation versus tyrosine kinase inhibitors combined with chemotherapy in patients with philadelphia chromosome–positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018;24(4):741–50.

    Article  CAS  PubMed  Google Scholar 

  97. Ito Y, Ozawa H, Eto T, Miyamoto T, Kamimura T, Ogawa R, et al. IKZF1plus alterations are not associated with outcomes in Philadelphia-positive acute lymphoblastic leukemia patients enrolled in the FBMTG ALL/MRD2008 trial. Eur J Haematol. 2023;111(1):103–12. https://doi.org/10.1111/ejh.13972.

    Article  CAS  PubMed  Google Scholar 

  98. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cortes JE, Kim DW, Pinilla-Ibarz JL, Le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J. A phase 2 trial of ponatinib in Philadelphia chromosome–positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    Article  CAS  PubMed  Google Scholar 

  100. Wang H, Yang C, Shi T, Zhang Y, Qian J, Wang Y, Hu Y, Mao L, Ye X, Liu F, Xi Z. Venetoclax-ponatinib for T315I/compound-mutated Ph+ acute lymphoblastic leukemia. Blood Cancer J. 2022;12(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):1–1.

    Article  Google Scholar 

  102. Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021;6(12):744823.

    Article  Google Scholar 

  103. Pan K, Farrukh H, Chittepu VC, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41(1):1–21.

    Article  Google Scholar 

  104. Zhang C, Liu J, Zhong JF, Zhang X. Engineering car-t cells. Biomarker research. 2017;5(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res. 2018;37:1–23.

    Article  Google Scholar 

  106. Xu X, Huang S, Xiao X, Sun Q, Liang X, Chen S, Zhao Z, Huo Z, Tu S, Li Y. Challenges and clinical strategies of CAR T-cell therapy for acute lymphoblastic leukemia: overview and developments. Front Immunol. 2021;10(11):569117.

    Article  Google Scholar 

  107. Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol. 2022;29(12):967754.

    Article  Google Scholar 

  108. O’Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D, Gavin D, Lee S, Liu K, George B, Bryan W. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res. 2019;25(4):1142–6.

    Article  PubMed  Google Scholar 

  109. Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, Xie Z, Qiao X, Jiang H, Shao J, Yang F. Coadministration of CD19-and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–83.

    Article  CAS  PubMed  Google Scholar 

  111. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood J American Soc Hematol. 2019;133(15):1652–63.

    CAS  Google Scholar 

  112. Zhang X, Yang J, Li J, Li W, Song D, Lu XA, Wu F, Li J, Chen D, Li X, Xu Z. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunology, Immunotherapy. 2022 ;71(3):689–703

  113. Pillai V, Muralidharan K, Meng W, Bagashev A, Oldridge DA, Rosenthal J, Van Arnam J, Melenhorst JJ, Mohan D, DiNofia AM, Luo M. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv. 2019;3(22):3539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lamble AJ, Myers RM, Taraseviciute A, John S, Yates B, Steinberg SM, Sheppard J, Kovach AE, Wood B, Borowitz MJ, Stetler-Stevenson M. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023; 28;7(4):575–85

  115. Dupouy S, Marchiq I, Derippe T, Almena-Carrasco M, Jozwik A, Fouliard S, Adimy Y, Geronimi J, Graham C, Jain N, Maus MV. Clinical pharmacology and determinants of response to UCART19, an allogeneic anti-CD19 CAR-T cell product, in adult B-cell acute lymphoblastic leukemia. Cancer Res Commun. 2022;2(11):1520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shahid S, Ramaswamy K, Flynn J, Mauguen A, Perica K, Park JH, Forlenza CJ, Shukla NN, Steinherz PG, Margossian SP, Boelens JJ. Impact of bridging chemotherapy on clinical outcomes of CD19-specific CAR T cell therapy in children/young adults with relapsed/refractory B cell acute lymphoblastic leukemia. Transplantation Cellular Ther. 2022;28(2):72-e1.

    Article  Google Scholar 

  117. An F, Wang H, Liu Z, Wu F, Zhang J, Tao Q, Li Y, Shen Y, Ruan Y, Zhang Q, Pan Y. Influence of patient characteristics on chimeric antigen receptor T cell therapy in B-cell acute lymphoblastic leukemia. Nat Commun. 2020;11(1):5928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11:1–5.

    Article  Google Scholar 

  119. Chen M, Fu M, Wang A, Wu X, Zhen J, Gong M, Zhang X, Yue G, Du Q, Zhao W, Zhao Y. Cytoplasmic CD79a is a promising biomarker for B lymphoblastic leukemia follow up post CD19 CAR-T therapy. Leuk Lymphoma. 2022;63(2):426–34.

    Article  CAS  PubMed  Google Scholar 

  120. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Optimizing the clinical impact of CAR-T cell therapy in B-cell acute lymphoblastic leukemia: looking back while moving forward. Front Immunol. 2021;28(12):765097.

    Article  Google Scholar 

  123. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood J American Soc Hematol. 2017;129(25):3322–31.

    CAS  Google Scholar 

  124. Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, Xie Z, Qiao X, Jiang H, Shao J, Yang F. Coadministration of CD19-and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–83.

    Article  CAS  PubMed  Google Scholar 

  125. Dekker L, Calkoen FG, Jiang Y, Blok H, Veldkamp SR, De Koning C, Spoon M, Admiraal R, Hoogerbrugge P, Vormoor B, Vormoor HJ. Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 2022;6(7):1969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gauthier J, Bezerra ED, Hirayama AV, Fiorenza S, Sheih A, Chou CK, Kimble EL, Pender BS, Hawkins RM, Vakil A, Phi TD. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood J American Soc Hematol. 2021;137(3):323–35.

    CAS  Google Scholar 

  127. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood J American Soc Hematol. 2019;133(15):1652–63.

    CAS  Google Scholar 

  128. Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines. 2023;11(3):821.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Garcia-Prieto CA, Villanueva L, Bueno-Costa A, Davalos V, González-Navarro EA, Juan M, Urbano-Ispizua Á, Delgado J, Ortiz-Maldonado V, Del Bufalo F, Locatelli F. Epigenetic profiling and response to CD19 chimeric antigen receptor T-cell therapy in B-cell malignancies. JNCI: Journal of the National Cancer Institute. 2022 Mar 1;114(3):436–45

  131. Piñeyroa JA, Cid J, Lozano M. Get off on the right foot: how to plan an efficient leukocytapheresis to collect T cells for CAR T-cell manufacturing. Transfus Med Hemother. 2023;50(2):98–104.

    Article  PubMed  Google Scholar 

  132. Jo T, Yoshihara S, Hada A, Arai Y, Kitawaki T, Ikemoto J, Onomoto H, Sugiyama H, Yoshihara K, Obi N, Matsui K. A clinically applicable prediction model to improve T cell collection in chimeric antigen receptor T cell therapy. Transplantation and Cellular Therapy. 2022 Jul 1;28(7):365-e1

  133. An F, Wang H, Liu Z, Wu F, Zhang J, Tao Q, Li Y, Shen Y, Ruan Y, Zhang Q, Pan Y. Influence of patient characteristics on chimeric antigen receptor T cell therapy in B-cell acute lymphoblastic leukemia. Nat Commun. 2020;11(1):5928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, Pequignot E, Gonzalez VE, Chen F, Finklestein J, Barrett DM. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tedesco VE, Mohan C. Biomarkers for predicting cytokine release syndrome following CD19-targeted CAR T cell therapy. J Immunol. 2021;206(7):1561–8.

    Article  PubMed  Google Scholar 

  136. Zhou L, Fu W, Wu S, Xu K, Qiu L, Xu Y, Yan X, Zhang Q, Zhang M, Wang L, Hong R. Derivation and validation of a novel score for early prediction of severe CRS after CAR‐T therapy in haematological malignancy patients: A multi‐centre study. British Journal of Haematology. 2023

  137. Yan Z, Zhang H, Cao J, Zhang C, Liu H, Huang H, Cheng H, Qiao J, Wang Y, Wang Y, Gao L. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 2021;23(12):611366.

    Article  Google Scholar 

  138. Schultz LM, Baggott C, Prabhu S, Pacenta HL, Phillips CL, Rossoff J, Stefanski HE, Talano JA, Moskop A, Margossian SP, Verneris MR. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J Clin Oncol. 2022;40(9):945.

    Article  CAS  PubMed  Google Scholar 

  139. Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ, Hohl TM, Seo SK. Cytokine release syndrome grade as a predictive marker for infections in patients with relapsed or refractory B-cell acute lymphoblastic leukemia treated with chimeric antigen receptor T cells. Clin Infect Dis. 2018;67(4):533–40.

    Article  CAS  PubMed  Google Scholar 

  140. Tallantyre EC, Evans NA, Parry-Jones J, Morgan MP, Jones CH, Ingram W. Neurological updates: neurological complications of CAR-T therapy. J Neurol. 2021;268:1544–54.

    Article  PubMed  Google Scholar 

  141. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11:1–5.

    Article  Google Scholar 

  143. Karschnia P, Jordan JT, Forst DA, Arrillaga-Romany IC, Batchelor TT, Baehring JM, Clement NF, Gonzalez Castro LN, Herlopian A, Maus MV, Schwaiblmair MH. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood J American Soc Hematol. 2019;133(20):2212–21.

    CAS  Google Scholar 

  144. Lee KJ, Chow V, Weissman A, Tulpule S, Aldoss I, Akhtari M. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag. 2016;25:1301–10.

    Google Scholar 

  145. Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clinical Pharmacol: Adv Appl. 2013;5(sup1):5–11.

    CAS  Google Scholar 

  146. Pulte ED, Vallejo J, Przepiorka D, Nie L, Farrell AT, Goldberg KB, McKee AE, Pazdur R. FDA supplemental approval: blinatumomab for treatment of relapsed and refractory precursor B-Cell Acute lymphoblastic leukemia. Oncologist. 2018;23(11):1366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Markova IV, Bondarenko SN, Paina OV, Aubova BI, Kozhokar PV, Frolova AS, Barkhatov IM, Babenko EV, Alyanskiy AA, Ekushov KA, Gindina TL. Features of response to blinatumomab and inotuzumab ozogamicin therapy in patients with relapse/refractory B-cells acute lymphoblastic leukemia in real clinical practice. Cellular Ther Transplantation. 2020;9(1):47–52.

    Article  Google Scholar 

  148. Markova I, Bondarenko SN, Paina OV, Osipova AA, Ayubova BI, Bakin EA, Smirnova AG, Babenko E, Semenova EV, Moiseev IS, Zander AR. Predictive model of response to blinatumomab therapy in children and adults with relapsed/refractory B-ALL. Blood. 2020;5(136):6–7.

    Article  Google Scholar 

  149. Wei AH, Ribera JM, Larson RA, Ritchie D, Ghobadi A, Chen Y, Anderson A, Dos Santos CE, Franklin J, Kantarjian H. Biomarkers associated with blinatumomab outcomes in acute lymphoblastic leukemia. Leukemia. 2021 Aug;35(8):2220–31

  150. Duell J, Dittrich M, Bedke T, Mueller T, Rasche L, Dandekar T, Einsele H, Topp MS. Crucial role of regulatory T cells in predicting the outcome of the T cell engaging antibody blinatumomab in relapsed and refractory B precursor ALL patients. Blood. 2014;124(21):2291.

    Article  Google Scholar 

  151. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, Rasche L, Hartmann E, Dandekar T, Einsele H, Topp MS. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31(10):2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Aldoss I, Otoukesh S, Zhang J, Mokhtari S, Ngo D, Mojtahedzadeh M, Al Malki MM, Salhotra A, Ali H, Aribi A, Sandhu KS. Extramedullary disease relapse and progression after blinatumomab therapy for treatment of acute lymphoblastic leukemia. Cancer. 2022;128(3):529–35.

    Article  CAS  PubMed  Google Scholar 

  153. Zhu M, Kratzer A, Johnson J, Holland C, Brandl C, Singh I, Wolf A, Doshi S. Blinatumomab pharmacodynamics and exposure–response relationships in relapsed/refractory acute lymphoblastic leukemia. J Clin Pharmacol. 2018;58(2):168–79.

    Article  CAS  PubMed  Google Scholar 

  154. Jung SH, Lee SR, Yang DH, Lee S, Yoon JH, Lee H, Bang SM, Koh Y, Park S, Kim DS, Yhim HY. Efficacy and safety of blinatumomab treatment in adult Korean patients with relapsed/refractory acute lymphoblastic leukemia on behalf of the Korean Society of Hematology ALL Working Party. Ann Hematol. 2019;30(98):151–8.

    Article  Google Scholar 

  155. Queudeville M, Stein AS, Locatelli F, Ebinger M, Handgretinger R, Gökbuget N, Gore L, Zeng Y, Gokani P, Zugmaier G, Kantarjian HM. Low leukemia burden improves blinatumomab efficacy in patients with relapsed/refractory B‐cell acute lymphoblastic leukemia. Cancer. 2023 May 1;129(9):1384–93.

  156. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gökbuget N, Topp MS, Fielding AK, Rambaldi A, Ritchie EK, Papayannidis C, Sterling LR. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802.

    Article  CAS  PubMed  Google Scholar 

  157. Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, Diedrich H, Topp MS, Brüggemann M, Horst HA, Havelange V. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood J American Soc Hematol. 2018;131(14):1522–31.

    Google Scholar 

  158. Gökbuget N, Kantarjian HM, Brüggemann M, Stein AS, Bargou RC, Dombret H, Fielding AK, Heffner L, Rigal-Huguet F, Litzow M, O’Brien S. Molecular response with blinatumomab in relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Adv. 2019;3(20):3033–7.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Leotta S, Duminuco A, Mulè A, Tringali S, Mauro E, Vetro C, Maugeri C, Parisi M, Garibaldi B, Di Renzo N, Romano C. Minimal Residual Disease Negativity after Blinatumomab Is Predictive of Survival in B-Cell Acute Lymphoblastic Leukemia: Data from a Real-Life Study. Blood. 2022;140(Supplement 1):11854–5.

    Article  Google Scholar 

  160. Essa MF, Abdellatif R, Elimam N, Ballourah W, Alsudairy R, Alkaiyat M, Alsultan A, Jastaniah W. Outcomes of blinatumomab based therapy in children with relapsed, persistent, or refractory acute lymphoblastic leukemia: a multicenter study focusing on predictors of response and post-treatment immunoglobulin production. Pediatr Hematol Oncol. 2022;39(7):613–28.

    Article  CAS  PubMed  Google Scholar 

  161. Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77:1603–10.

    Article  CAS  PubMed  Google Scholar 

  162. Yurkiewicz IR, Muffly L, Liedtke M. Inotuzumab ozogamicin: A CD22 mAb–drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des Dev Ther. 2018;24:2293–300.

    Article  Google Scholar 

  163. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Gökbuget N, O’Brien S, Wang K, Wang T, Paccagnella ML. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brivio E, Chantrain CF, Gruber TA, Thano A, Rialland F, Contet A, Elitzur S, Dalla-Pozza L, Kállay KM, Li CK, Kato M. Inotuzumab ozogamicin in infants and young children with relapsed or refractory acute lymphoblastic leukaemia: a case series. Br J Haematol. 2021;193(6):1172–7.

    Article  CAS  PubMed  Google Scholar 

  165. Jabbour EJ, DeAngelo DJ, Stelljes M, Stock W, Liedtke M, Gökbuget N, O’Brien S, Wang T, Paccagnella ML, Sleight B, Vandendries E. Efficacy and safety analysis by age cohort of inotuzumab ozogamicin in patients with relapsed or refractory acute lymphoblastic leukemia enrolled in INO-VATE. Cancer. 2018;124(8):1722–32.

    Article  CAS  PubMed  Google Scholar 

  166. Jabbour EJ, Sasaki K, Ravandi F, Short NJ, Garcia-Manero G, Daver N, Kadia T, Konopleva M, Jain N, Cortes J, Issa GC. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2019;125(15):2579–86.

    Article  CAS  PubMed  Google Scholar 

  167. Jabbour E, O’Brien S, Huang X, Thomas D, Rytting M, Sasaki K, Cortes J, Garcia-Manero G, Kadia T, Ravandi F, Pierce S. Prognostic factors for outcome in patients with refractory and relapsed acute lymphocytic leukemia treated with inotuzumab ozogamicin, a CD 22 monoclonal antibody. Am J Hematol. 2015;90(3):193–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, O’Brien SM, Jabbour E, Wang T, Liang White J, Sleight B. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474–87.

    Article  CAS  PubMed  Google Scholar 

  169. Jabbour E, Gökbuget N, Advani A, Stelljes M, Stock W, Liedtke M, Martinelli G, O’Brien S, Wang T, Laird AD, Vandendries E. Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leuk Res. 2020;1(88):106283.

    Article  Google Scholar 

  170. DeAngelo DJ, Advani AS, Marks DI, Stelljes M, Liedtke M, Stock W, Gökbuget N, Jabbour E, Merchant A, Wang T, Vandendries E. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer J. 2020;10(8):81.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rafei H, Kantarjian HM, Sasaki K, Short NJ, Ravandi F, Huang X, Khoury JD, Wang SA, Jorgensen JL, Khouri IF, Kebriaei P. CD22 Expression Level As a Predictor of Survival in Patients (Pts) with Relapsed/Refractory (RR) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. Blood. 2020;5(136):23–5.

    Article  Google Scholar 

  172. O’Brien MM, Ji L, Shah NN, Rheingold SR, Bhojwani D, Yuan CM, Xu X, Joanna SY, Harris AC, Brown PA, Borowitz MJ. Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children’s Oncology Group Protocol AALL1621. J Clin Oncol. 2022;40(9):956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kantarjian HM, Stock W, Cassaday RD, DeAngelo DJ, Jabbour E, O’Brien SM, Stelljes M, Wang T, Paccagnella ML, Nguyen K, Sleight B. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin Cancer Res. 2021;27(10):2742–54.

    Article  CAS  PubMed  Google Scholar 

  174. Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.

    Article  CAS  PubMed  Google Scholar 

  175. Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, York S, Ravandi F, Kwari M, Faderl S, Rios MB. Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.

    Article  CAS  PubMed  Google Scholar 

  176. Diaz-Flores E, Wintering A, Ishiyama K, Tamaki S, Tamaki C, Fandel J, Ji L, Wood B, Yuan CM, Shah NN, O’Brien MM. CD22 low/bcl-2 high expression identifies poor response to inotuzumab in relapsed/refractory acute lymphoblastic leukemia. Blood. 2021;23(138):614.

    Article  Google Scholar 

  177. Jabbour E, Advani AS, Stelljes M, Stock W, Liedtke M, Gökbuget N, Martinelli G, O’Brien S, White JL, Wang T, Luisa PM. Prognostic implications of cytogenetics in adults with acute lymphoblastic leukemia treated with inotuzumab ozogamicin. Am J Hematol. 2019;94(4):408–16.

    Article  CAS  PubMed  Google Scholar 

  178. Kebriaei P, Cutler C, De Lima M, Giralt S, Lee SJ, Marks D, Merchant A, Stock W, Van Besien K, Stelljes M. Management of important adverse events associated with inotuzumab ozogamicin: expert panel review. Bone Marrow Transplant. 2018;53(4):449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD, Merchant AA, Fujishima N, Uchida T, Calbacho M, Ejduk AA. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. The Lancet Haematology. 2017;4(8):e387-98.

    Article  PubMed  Google Scholar 

  180. Senapati J, Jabbour E, Short N, Jain N, Kebriaei P, Champlin RE, Khouri IF, Shpall EJ, Nasnas P, Bidikian A, Garris R. Predictors of veno-occlusive disease (VOD) of the liver in patients treated with inotuzumab ozogamicin (InO) containing regimen in B-cell acute lymphoblastic leukemia. Blood. 2022 Nov 15;140(Supplement 1):3155–7

  181. Pierpont TM, Limper CB, Richards KL. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy. Front Oncol. 2018;4(8):163.

    Article  Google Scholar 

  182. Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, Giles FJ, Verstovsek S, Wierda WG, Pierce SA, Shan J. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–80.

    Article  CAS  PubMed  Google Scholar 

  183. Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, Ravandi F, Verstovsek S, Jorgensen JL, Bueso-Ramos C, Andreeff M. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome–negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Marks DI, Kirkwood AA, Rowntree CJ, Aguiar M, Bailey KE, Beaton B, Cahalin P, Castleton AZ, Clifton-Hadley L, Copland M, Goldstone AH. Addition of four doses of rituximab to standard induction chemotherapy in adult patients with precursor B-cell acute lymphoblastic leukaemia (UKALL14): a phase 3, multicentre, randomised controlled trial. The Lancet Haematology. 2022;9(4):e262-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, Chevallier P, Hunault M, Boissel N, Escoffre-Barbe M, Hess U. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.

    Article  CAS  PubMed  Google Scholar 

  186. Baek DW, Park HS, Sohn SK, Kim DY, Kim I, Ahn JS, Do YR, Lee SR, Eom HS, Lee WS, Kim SH. Rituximab plus multiagent chemotherapy for newly diagnosed CD20-positive acute lymphoblastic leukemia: a prospective phase II study. Korean J Intern Med. 2023;38(5):734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Alduailej H, Kanfar S, Bakhit K, Raslan H, Alsaber A, Bashawri L, Aldayel A, Alanezi K. Outcome of CD20-positive adult B-cell acute lymphoblastic leukemia and the impact of rituximab therapy. Clin Lymphoma Myeloma Leuk. 2020;20(9):e560-8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The original idea was suggested by ZK and NK. The idea was then expanded by AE. The literature search for relevant articles were done by all authors. All authors substantially contributed in writing the original manuscript. The critical review and final draft was done by AE.

Corresponding author

Correspondence to Zakaria Yahya Khawaji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Code of availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawaji, Z.Y., Khawaji, N.Y., Alahmadi, M.A. et al. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr. Treat. Options in Oncol. (2024). https://doi.org/10.1007/s11864-024-01237-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-024-01237-w

Keywords

Navigation