Skip to main content

Advertisement

Log in

Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Cancer-associated thrombosis (CAT) has been identified as the second most prevalent cause of death after cancer itself. Moreover, the risk of thrombotic events in cancer patients increases due to anticancer drugs, such as tyrosine kinase inhibitors (TKIs). Venous thromboembolism (VTE) as well as arterial thromboembolic (ATE) events are present in CAT. Although VTE occurs more frequently, ATE events are very significant and in some cases are more dangerous than VTE. Guidelines for preventing thrombosis refer mainly VTE as well as the contribution of ATE events. Several factors are involved in thrombosis related to cancer, but the whole pathomechanism of thrombosis is not clear and may differ between patients. The activation of the coagulation system and the interaction of cancer cells with other cells including platelets, endothelial cells, monocytes, and neutrophils are promoted by a hypercoagulable state caused by cancer. We present an update on the pathomechanisms of CAT and the effect of anticancer drugs, mainly targeted therapies with a focus on TKIs. Considering the risk of bleeding associated with anticoagulation in each cancer patient, the anticoagulation strategy may involve the use of FXIa inhibitors, direct oral anticoagulants, and low-molecular-weight heparin. Further research would be valuable in developing strategies for reducing CAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119(3):648–55.

    Article  CAS  PubMed  Google Scholar 

  3. Blann AD, Dunmore S. Arterial and venous thrombosis in cancer patients. Cardiol Res Pract. 2011;2011:394740.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abdulla A, Davis WM, Ratnaweera N, Szefer E, Ballantyne Scott B, Lee AYY. A Meta-Analysis of Case Fatality Rates of Recurrent Venous Thromboembolism and Major Bleeding in Patients with Cancer. Thromb Haemost. 2020;120(4):702–13.

    Article  PubMed  Google Scholar 

  5. Stein PD, Beemath A, Meyers FA, Skaf E, Sanchez J, Olson RE. Incidence of venous thromboembolism in patients hospitalized with cancer. Am J Med. 2006;119(1):60–8.

    Article  PubMed  Google Scholar 

  6. Lyman GH, Culakova E, Poniewierski MS, Kuderer NM. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb Res. 2018;164(Suppl 1):S112–8.

    Article  CAS  PubMed  Google Scholar 

  7. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5(3):632–4.

    Article  CAS  PubMed  Google Scholar 

  8. Elyamany G, Alzahrani AM, Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol. 2014;8:129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mulder FI, Horváth-Puhó E, van Es N, van Laarhoven HWM, Pedersen L, Moik F, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood. 2021;137(14):1959–69.

    Article  CAS  PubMed  Google Scholar 

  10. Heit JAOFW, Petterson TM, Lohse CM, Silverstein MD, Mohr DN, Melton LJ 3rd. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: A population-based study. Arch Intern Med. 2002;162:1245–8.

    Article  PubMed  Google Scholar 

  11. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715–22.

    Article  CAS  PubMed  Google Scholar 

  12. Prandoni P, Lensing AW, Piccioli A, Bernardi E, Simioni P, Girolami B, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood. 2002;100(10):3484–8.

    Article  CAS  PubMed  Google Scholar 

  13. Weitz JI, Haas S, Ageno W, Goldhaber SZ, Turpie AGG, Goto S, et al. Cancer associated thrombosis in everyday practice: perspectives from GARFIELD-VTE. J Thromb Thrombolysis. 2020;50(2):267–77.

    Article  CAS  PubMed  Google Scholar 

  14. Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of Arterial Thromboembolism in Patients With Cancer. J Am Coll Cardiol. 2017;70(8):926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu J, Li A, Laureano M, Crowther M. Frequency of arterial thromboembolism in populations with malignancies: A systematic review. Thromb Res. 2019;184:16–23.

    Article  CAS  PubMed  Google Scholar 

  16. Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood. 2007;110(6):1723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. V. Weitere Unter-suchungen huber die Verstopgung der Lungenarterie und ihre Folgen. In: Virchow R, ed. Gesammelte Abhandlungen zur wissenschaftlichen Medizin. Meidinger Sohn: Frankfurt am Main. 1856;227–380.

  18. Portillo J, de la Rocha IV, Font L, Braester A, Madridano O, Peromingo JA, et al. Venous thromboembolism in patients with glioblastoma multiforme: Findings of the RIETE registry. Thromb Res. 2015;136(6):1199–203.

    Article  CAS  PubMed  Google Scholar 

  19. Campia U. Vascular effects of cancer treatments. Vasc Med (London, England). 2020;25(3):226–34.

    Article  CAS  Google Scholar 

  20. Falanga A, Rickles FR. The pathogenesis of thrombosis in cancer. New Oncol Thrombosis. 2005;1:9–16.

    Google Scholar 

  21. Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89–93.

    Article  PubMed  Google Scholar 

  22. Falanga A, Marchetti M. Cancer-associated thrombosis: enhanced awareness and pathophysiologic complexity. J Thromb Haemost. 2023;21(6):1397–408.

    Article  PubMed  Google Scholar 

  23. Nachman RL, Silverstein R. Hypercoagulable states. Ann Intern Med. 1993;119(8):819–27.

    Article  CAS  PubMed  Google Scholar 

  24. Prosciak MP SS. Hypercoagulable states: A concise review. Int J Acad Med 2017;3:Suppl S1:82–95. https://doi.org/10.4103/IJAM.IJAM_18_17.

  25. Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G, et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature. 2005;434(7031):396–400.

    Article  CAS  PubMed  Google Scholar 

  26. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood. 2005;105(4):1734–41.

    Article  CAS  PubMed  Google Scholar 

  27. Hisada Y, Mackman N. Tissue factor and cancer: regulation, tumor growth, and metastasis. Semin Thromb Hemost. 2019;45(4):385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khorana AA. Cancer and coagulation. Am J Hematol. 2012;87(Suppl 1):S82–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Diane Mege LP-D, Dubois C. Mechanisms of cancer-associated thrombosis. HemaSphere. 2019;3(S2):19–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Date K, Ettelaie C, Maraveyas A. Tissue factor-bearing microparticles and inflammation: a potential mechanism for the development of venous thromboembolism in cancer. J Thromb Haemost. 2017;15(12):2289–99.

    Article  CAS  PubMed  Google Scholar 

  31. Nieuwland R, Gardiner C, Dignat-George F, Mullier F, Mackman N, Woodhams B, et al. Toward standardization of assays measuring extracellular vesicle-associated tissue factor activity. J Thromb Haemost. 2019;17(8):1261–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med. 2009;206(9):1913–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geddings JE, Hisada Y, Boulaftali Y, Getz TM, Whelihan M, Fuentes R, et al. Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost. 2016;14(1):153–66.

    Article  CAS  PubMed  Google Scholar 

  34. Rousseau A, Van Dreden P, Khaterchi A, Larsen AK, Elalamy I, Gerotziafas GT. Procoagulant microparticles derived from cancer cells have determinant role in the hypercoagulable state associated with cancer. Int J Oncol. 2017;51(6):1793–800.

    Article  CAS  PubMed  Google Scholar 

  35. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51(11):3062–6.

    CAS  PubMed  Google Scholar 

  36. Sharma B, Kanwar SS. Phosphatidylserine: A cancer cell targeting biomarker. Semin Cancer Biol. 2018;52(Pt 1):17–25.

    Article  CAS  PubMed  Google Scholar 

  37. Yu M, Li T, Li B, Liu Y, Wang L, Zhang J, et al. Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer. Thromb Research. 2020;188:5–16.

    Article  CAS  Google Scholar 

  38. Krishnamurthy VR, Sardar MY, Ying Y, Song X, Haller C, Dai E, et al. Glycopeptide analogues of PSGL-1 inhibit P-selectin in vitro and in vivo. Nat Commun. 2015;6:6387.

    Article  CAS  PubMed  Google Scholar 

  39. Kappelmayer J, Nagy B Jr. The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression. BioMed Res Int. 2017;2017:6138145.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wahrenbrock M, Borsig L, Le D, Varki N, Varki A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112(6):853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inaba T, Sano H, Kawahito Y, Hla T, Akita K, Toda M, et al. Induction of cyclooxygenase-2 in monocyte/macrophage by mucins secreted from colon cancer cells. Proc Natl Acad Sci USA. 2003;100(5):2736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woei AJFJ, Tesselaar ME, Garcia Rodriguez P, Romijn FP, Bertina RM, Osanto S. Tissue factor-bearing microparticles and CA19.9: two players in pancreatic cancer-associated thrombosis? Br J Cancer. 2016;115(3):332–8.

    Article  Google Scholar 

  43. Koizume S, Jin MS, Miyagi E, Hirahara F, Nakamura Y, Piao JH, et al. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res. 2006;66(19):9453–60.

    Article  CAS  PubMed  Google Scholar 

  44. Boccaccio CCP. Oncogenes, cancer, and hemostasis. In: Khorana AA, Francis CW, editors. Cancer-associated thrombosis: New findings in translational science, prevention, and treatment. Informa Healthcare: New York; 2008. p. 1–13.

    Google Scholar 

  45. Falanga A, Schieppati F, Russo L. Pathophysiology 1. Mechanisms of thrombosis in cancer patients. Cancer Treat Res Commun. 2019;179:11–36.

    Article  CAS  Google Scholar 

  46. Gordon SG, Franks JJ, Lewis B. Cancer procoagulant A: a factor X activating procoagulant from malignant tissue. Thromb Res. 1975;6(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  47. Gordon SG, Mielicki WP. Cancer procoagulant: a factor X activator, tumor marker and growth factor from malignant tissue. Blood Coagul Fibrinolysis. 1997;8(2):73–86.

    Article  CAS  PubMed  Google Scholar 

  48. Nickel KF, Ronquist G, Langer F, Labberton L, Fuchs TA, Bokemeyer C, et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood. 2015;126(11):1379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Campello E, Henderson MW, Noubouossie DF, Simioni P, Key NS. Contact system activation and cancer: new insights in the pathophysiology of cancer-associated thrombosis. Thromb Haemostasis. 2018;118(2):251–65.

    Article  CAS  Google Scholar 

  50. Bazzi ZA, Lanoue D, El-Youssef M, Romagnuolo R, Tubman J, Cavallo-Medved D, et al. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC Cancer. 2016;16:328.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rein-Smith CM, Church FC. Emerging pathophysiological roles for fibrinolysis. Curr Opin Hematol. 2014;21(5):438–44.

    Article  CAS  PubMed  Google Scholar 

  52. Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst. 2002;94(2):116–28.

    Article  CAS  PubMed  Google Scholar 

  53. Westrick RJ, Eitzman DT. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr Drug Targets. 2007;8(9):966–1002.

    Article  PubMed  Google Scholar 

  54. Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood. 2017;130(13):1499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gramling MW, Church FC. Plasminogen activator inhibitor-1 is an aggregate response factor with pleiotropic effects on cell signaling in vascular disease and the tumor microenvironment. Thromb Res. 2010;125(5):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Westrick RJ, Røjkjaer LP, Yang AY, Roh MH, Siebert AE, Ginsburg D. Deficiency of plasminogen activator inhibitor-2 results in accelerated tumor growth. J Thromb Haemost. 2020;11:2968–75. https://doi.org/10.1111/jth.15054.

    Article  CAS  Google Scholar 

  57. Weitz JI, Chan NC. Novel antithrombotic strategies for treatment of venous thromboembolism. Blood. 2020;135(5):351–9.

    Article  PubMed  Google Scholar 

  58. Eroğlu A, Ceylan GG, Ozturk E, Yalcin A, Yalcin B, Karasoy D. The efficacy of tissue factor -603A/G and +5466A>G polimorphisms at the development of venous thromboembolism in cancer patients. Exp Oncol. 2016;38(3):187–90.

    Article  PubMed  Google Scholar 

  59. Wahba MA, Ismail MA, Saad AA, Habashy DM, Hafeez ZM, Boshnak NH. Impact of thrombophilic genes mutations on thrombosis risk in Egyptian nonmetastatic cancer patients. Blood Coagul Fibrinolysis. 2015;26(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  60. Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost. 2020;18(5):1009–19.

    Article  CAS  PubMed  Google Scholar 

  61. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018;18(4):e27.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stoiber D, Assinger A. Platelet-leukocyte interplay in cancer development and progression. Cells. 2020;9(4):855. https://doi.org/10.3390/cells9040855.

  64. Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16.

    Article  CAS  PubMed  Google Scholar 

  65. Mauracher LM, Posch F, Martinod K, Grilz E, Daullary T, Hell L, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–18.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, et al. Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Sci. 2018;109(5):1292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993–6001.

    Article  CAS  PubMed  Google Scholar 

  68. Bastida E, Ordinas A, Jamieson GA. Differing platelet aggregating effects by two tumor cell lines: absence of role for platelet-derived ADP. Am J Hematol. 1981;11(4):367–78.

    Article  CAS  PubMed  Google Scholar 

  69. Heinmöller E, Weinel RJ, Heidtmann HH, Salge U, Seitz R, Schmitz I, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996;122(12):735–44.

    Article  PubMed  Google Scholar 

  70. de Leval X, Benoit V, Delarge J, Julémont F, Masereel B, Pirotte B, et al. Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins Leukot Essent Fatty Acids. 2003;68(1):55–9.

    Article  PubMed  Google Scholar 

  71. Abdol Razak NB, Jones G, Bhandari M, Berndt MC, Metharom P. Cancer-associated thrombosis: an overview of mechanisms, risk factors, and treatment. Cancers (Basel). 2018;10:380. https://doi.org/10.3390/cancers10100380.

  72. Reddel CJ, Tan CW, Chen VM. Thrombin generation and cancer: contributors and consequences. Cancers. 2019;11(1):100. https://doi.org/10.3390/cancers11010100.

  73. Palacios-Acedo AL, Mege D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Platelets, thrombo-inflammation, and cancer: collaborating with the enemy. Front Immunol. 2019;10:1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood. 2018;131(16):1777–89.

    Article  CAS  PubMed  Google Scholar 

  75. Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med. 2013;24(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  76. Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. An overview of the role of platelets in angiogenesis, apoptosis and autophagy in chronic myeloid leukaemia. Cancer Cell Int. 2017;17:89.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mezouar S, Mege D, Darbousset R, Farge D, Debourdeau P, Dignat-George F, et al. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol. 2014;41(3):346–58.

    Article  CAS  PubMed  Google Scholar 

  78. Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol. 2009;22(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  79. Lacroix R, Vallier L, Bonifay A, Simoncini S, Mege D, Aubert M, et al. Microvesicles and cancer associated thrombosis. Semin Thromb Hemostasis. 2019;45(6):593–603.

    Article  Google Scholar 

  80. AmraneDjedidi R, Rousseau A, Larsen AK, Elalamy I, Van Dreden P, Gerotziafas GT. Extracellular vesicles derived from pancreatic cancer cells BXPC3 or breast cancer cells MCF7 induce a permanent procoagulant shift to endothelial cells. Thromb Res. 2020;187:170–9.

    Article  CAS  PubMed  Google Scholar 

  81. Richards DM, Hettinger J, Feuerer M. Monocytes and macrophages in cancer: development and functions. Cancer Microenviron. 2013;6(2):179–91.

    Article  CAS  PubMed  Google Scholar 

  82. Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 2014;40(3):277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hisada Y, Grover SP, Maqsood A, Houston R, Ay C, Noubouossie DF, et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica. 2020;105(1):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 2012;109(32):13076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamza MS, Mousa SA. Cancer-associated thrombosis: risk factors, molecular mechanisms, future management. Clin Appl Thromb Hemost. 2020;26:1076029620954282. https://doi.org/10.1177/1076029620954282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Falanga A, Marchetti M. Anticancer treatment and thrombosis. Thromb Res. 2012;129(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  87. Oppelt P, Betbadal A, Nayak L. Approach to chemotherapy-associated thrombosis. Vasc Med. 2015;20(2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Canale ML, Bisceglia I, Lestuzzi C, Parrini I. Arterial thrombosis in cancer: spotlight on the neglected vessels. Anticancer Res. 2019;39(9):4619–25.

    Article  CAS  PubMed  Google Scholar 

  89. Aronson D, Brenner B. Arterial thrombosis and cancer. Thromb Res. 2018;164(Suppl 1):S23–8.

    Article  CAS  PubMed  Google Scholar 

  90. Deitcher SR, Gomes MP. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer. 2004;101(3):439–49.

    Article  PubMed  Google Scholar 

  91. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;295(23):2727–41.

    Article  CAS  PubMed  Google Scholar 

  92. Jiang D, Lee AI. Thrombotic risk from chemotherapy and other cancer therapies. Cancer Τreat Res. 2019;179:87–101.

    Article  Google Scholar 

  93. Rodeghiero F, Elice F. Thalidomide and thrombosis. Pathophysiol Haemost Thromb. 2003;33(Suppl 1):15–8.

    Article  PubMed  Google Scholar 

  94. Narta UK, Kanwar SS, Azmi W. Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol. 2007;61(3):208–21.

    Article  PubMed  Google Scholar 

  95. Grace RF, Dahlberg SE, Neuberg D, Sallan SE, Connors JM, Neufeld EJ, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol. 2011;152(4):452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zwicker JI, Wang TF, DeAngelo DJ, Lauw MN, Connors JM, Falanga A, et al. The prevention and management of asparaginase-related venous thromboembolism in adults: Guidance from the SSC on Hemostasis and Malignancy of the ISTH. J Thromb Haemost. 2020;18(2):278–84.

    Article  PubMed  Google Scholar 

  97. Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res. 2020;152:104609.

    Article  CAS  PubMed  Google Scholar 

  98. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315(3):971–9.

    Article  CAS  PubMed  Google Scholar 

  99. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. New Eng J Med. 2001;344(14):1038–42.

    Article  CAS  PubMed  Google Scholar 

  100. Skobridis K, Kinigopoulou M, Theodorou V, Giannousi E, Russell A, Chauhan R, et al. Novel imatinib derivatives with altered specificity between Bcr-Abl and FMS, KIT, and PDGF receptors. ChemMedChem. 2010;5(1):130–9.

    Article  CAS  PubMed  Google Scholar 

  101. Haguet H, Douxfils J, Mullier F, Chatelain C, Graux C, Dogné JM. Risk of arterial and venous occlusive events in chronic myeloid leukemia patients treated with new generation BCR-ABL tyrosine kinase inhibitors: a systematic review and meta-analysis. Expert Opin Drug Saf. 2017;16(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  102. Grover SP, Hisada YM, Kasthuri RS, Reeves BN, Mackman N. Cancer therapy-associated thrombosis. Arterioscler Thromb Vasc Biol. 2021;41(4):1291–305. This reference is of importance because explains clearly the mechanisms between the cancer therapies and the procoagulant state. Cancer therapies are associated also with a significantly increased risk of thrombosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alhawiti N, Burbury KL, Kwa FA, O’Malley CJ, Shuttleworth P, Alzard M, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res. 2016;145:54–64.

    Article  CAS  PubMed  Google Scholar 

  104. • Wu MD, Moslehi JJ, Lindner JR. Arterial thrombotic complications of tyrosine kinase inhibitors. Arterioscler Thromb Vasc Biol. 2021;41(1):3–10. This reference is of importance because explains that Tyrosine kinase inhibitors (TKIs) that target the breakpoint cluster region-Abelson 1 (BCR-ABL1) have been linked, but not exclusively, to an increased risk of acute arterial thrombotic events, which include acute myocardial infarction and stroke.

    Article  CAS  PubMed  Google Scholar 

  105. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(5):612–21.

    Article  CAS  PubMed  Google Scholar 

  107. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boqué C, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34(20):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pantazi D, Ntemou N, Brentas A, Alivertis D, Skobridis K, Tselepis AD. Molecular requirements for the expression of antiplatelet effects by synthetic structural optimized analogues of the anticancer drugs imatinib and nilotinib. Drug Des Devel Ther. 2019;13:4225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kosma A, Pantazi D, Voulgari P, Ntemou N, Brentas A, Alivertis D, et al. Expressing enhanced inhibitory effects toward arachidonic acid induced platelet activation: design, synthesis, DFT calculations and in vitro evaluation of imatinib analogues. ChemistrySelect. 2023;8(11):e202200405.https://doi.org/10.1002/slct.202200405.

  110. Pechlivani L, Ntemou N, Pantazi D, Alivertis D, Skobridis K, Tselepis AD. Synthesis of novel nilotinib analogues and biological evaluation of their antiplatelet activity and functionality towards cancer cell proliferation in vitro. Pharmaceuticals. 2024;17(3):349. https://doi.org/10.3390/ph17030349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tullemans BME, Veninga A, Fernandez DI, Aarts MJB, Eble JA, van der Meijden PEJ, et al. Multiparameter evaluation of the platelet-inhibitory effects of tyrosine kinase inhibitors used for cancer treatment. Int J Mol Sci. 2021;22(20):11199. https://doi.org/10.3390/ijms222011199.

  112. Tullemans BME, Heemskerk JWM, Kuijpers MJE. Acquired platelet antagonism: off-target antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. J Thromb Haemost. 2018;16(9):1686–99.

    Article  CAS  PubMed  Google Scholar 

  113. Venkataraman V, Bales JR, Signorelli J, Hobbs GS. Incidence of bleeding events in patients on concomitant tyrosine kinase inhibitors and selective serotonin reuptake inhibitors. J Oncol Pharm Pract. 2023;29(5):1119–24.

    Article  CAS  PubMed  Google Scholar 

  114. Dobie G, Kuriri FA, Omar MMA, Alanazi F, Gazwani AM, Tang CPS, et al. Ibrutinib, but not zanubrutinib, induces platelet receptor shedding of GPIb-IX-V complex and integrin αIIbβ3 in mice and humans. Blood Adv. 2019;3(24):4298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Elice F, Rodeghiero F, Falanga A, Rickles FR. Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol. 2009;22(1):115–28.

    Article  CAS  PubMed  Google Scholar 

  116. Eremina V, Quaggin SE. Biology of anti-angiogenic therapy-induced thrombotic microangiopathy. Semin Nephrol. 2010;30(6):582–90.

    Article  CAS  PubMed  Google Scholar 

  117. Muñoz Martín AJ, Ramírez SP, Morán LO, Zamorano MR, Benéitez MCV, Salcedo IA, et al. Pharmacological cancer treatment and venous thromboembolism risk. Eur Heart J Suppl. 2020;22(Suppl C):C2-c14.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Moik F, Ay C. Venous and arterial thromboembolism in patients with cancer treated with targeted anti-cancer therapies. Thromb Res. 2022;213(Suppl 1):S58-s65.

    Article  CAS  PubMed  Google Scholar 

  119. Font C, de Herreros MG, Tsoukalas N, Brito-Dellan N, Espósito F, Escalante C, et al. Thrombotic microangiopathy (TMA) in adult patients with solid tumors: a challenging complication in the era of emerging anticancer therapies. Support Care Cancer. 2022;30(10):8599–609.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pantazi D, Tselepis AD. Cardiovascular toxic effects of antitumor agents: Pathogenetic mechanisms. Thromb Res. 2022;213(Suppl 1):S95-s102.

    Article  CAS  PubMed  Google Scholar 

  121. Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–361.

    Article  PubMed  Google Scholar 

  122. Iurlo A, Cattaneo D, Bucelli C, Spallarossa P, Passamonti F. Cardiovascular adverse events of tyrosine kinase inhibitors in chronic myeloid leukemia: clinical relevance, impact on outcome, preventive measures and treatment strategies. Curr Treat Options Oncol. 2023;24(12):1720–38.

    Article  PubMed  Google Scholar 

  123. Falanga A, Ay C, Di Nisio M, Gerotziafas G, Jara-Palomares L, Langer F, et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann Oncol. 2023;34(5):452–67. This reference is of outstanding importance because constitutes an updated European Society for Medical Oncology (ESMO) Clinical Practice Guideline (CPG) that summarises recommendations for the prevention and treatment of VTE in patients with cancer.

    Article  CAS  PubMed  Google Scholar 

  124. Khorana AA, McCrae KR. Risk stratification strategies for cancer-associated thrombosis: an update. Thromb Res. 2014;133(Suppl 2):S35–8.

    Article  CAS  PubMed  Google Scholar 

  125. Xiong W, Agewall S, Yamashita Y. Anticoagulation in cancer-associated thrombosis: how long should the therapy be? Eur Heart J Cardiovasc Pharmacother. 2024;10(1):3–4.

    Article  PubMed  Google Scholar 

  126. Sanfilippo KM, Moik F, Candeloro M, Ay C, Di Nisio M, Lee AYY. Unanswered questions in cancer-associated thrombosis. Br J Haematol. 2022;198(5):812–25.

    Article  PubMed  Google Scholar 

  127. Wang TF, Khorana AA, Agnelli G, Bloomfield D, Bonaca MP, Büller HR, et al. Treatment of Cancer-Associated Thrombosis: Recent Advances, Unmet Needs, and Future Direction. Oncologist. 2023;28(7):555–64. This reference is of outstanding importance because describes the effectiveness and safety of factor XI inhibitors for the treatment of VTE associated with cancer.

Download references

Acknowledgements

The authors thank the Atherothrombosis Research Center of the University of Ioannina, Ioannina Greece.

Funding

The authors stated that this work was not supported by any grants.

Author information

Authors and Affiliations

Authors

Contributions

Writing and preparing the manuscript were performed by Dr. D.P. Assistant Professor D.A. made improvements. The appropriate corrections are made by the emeritus professor A.D.T. The final paper has been authorised by all authors.

Corresponding author

Correspondence to Despoina Pantazi MSc, PhD.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantazi, D., Alivertis, D. & Tselepis, A.D. Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies. Curr. Treat. Options in Oncol. 25, 897–913 (2024). https://doi.org/10.1007/s11864-024-01210-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-024-01210-7

Keywords

Navigation