Skip to main content
Log in

Impact of PSMA PET on Prostate Cancer Management

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

PSMA-PET has been a practice-changing imaging biomarker for the management of men with PCa. Research suggests improved accuracy over conventional imaging and other PET radiotracers in many contexts. With multiple approved PSMA-targeting radiotracers, PSMA PET will become even more available in clinical practice. Its increased use requires an understanding of the prospective data available and caution when extrapolating from prior trial data that utilized other imaging modalities. Future trials leveraging PSMA PET for treatment optimization and management decision-making will ultimately drive its clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    CAS  PubMed  Google Scholar 

  3. Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993;53:227–30.

    CAS  PubMed  Google Scholar 

  4. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  5. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, Haberkorn U, Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  7. Will L, Sonni I, Kopka K, Kratochwil C, Giesel FL, Haberkorn U. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors. Q J Nucl Med Mol Imaging. 2017;61:168–80.

    Article  PubMed  Google Scholar 

  8. Calais J, Ceci F, Eiber M, et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20:1286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morigi JJ, Stricker PD, Van Leeuwen PJ, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90.

    Article  CAS  PubMed  Google Scholar 

  10. Fraser M, Koontz B, Emmenegger U, et al. What is oligometastatic prostate cancer? Eur Urol Focus. 2019;5:159–61.

    Article  PubMed  Google Scholar 

  11. •• Phillips R, Shi WY, Deek M, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 2020;6:650–9. Randomized study showing patients with PSMA PET–positive metastatic lesions that were not treated with radiotherapy had shorter progression-free survival.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahbar K, Boegemann M, Yordanova A, Eveslage M, Schäfers M, Essler M, Ahmadzadehfar H. PSMA targeted radioligandtherapy in metastatic castration resistant prostate cancer after chemotherapy, abiraterone and/or enzalutamide. A retrospective analysis of overall survival. Eur J Nucl Med Mol Imaging. 2018;45:12–9.

    Article  CAS  PubMed  Google Scholar 

  13. Parker CC, James ND, Brawley CD, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018;392:2353–66.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ranasinghe W, Chapin BF, Kim IY, Sooriakumaran P, Lawrentschuk N. The cytoreductive prostatectomy in metastatic prostate cancer: what the individual trials are hoping to answer. BJU Int. 2020;125:792–800.

    Article  CAS  PubMed  Google Scholar 

  15. Boevé LMS, Hulshof MCCM, Vis AN, Zwinderman AH, Twisk JWR, Witjes WPJ, Delaere KPJ, van Moorselaar RJA, Verhagen PCMS, van Andel G. Effect on survival of androgen deprivation therapy alone compared to androgen deprivation therapy combined with concurrent radiation therapy to the prostate in patients with primary bone metastatic prostate cancer in a prospective randomised clinical trial: data from the HORRAD trial. Eur Urol. 2019;75:410–8.

    Article  PubMed  Google Scholar 

  16. Tang C, Sherry AD, Haymaker C, et al. Addition of metastasis-directed therapy to intermittent hormone therapy for oligometastatic prostate cancer: the EXTEND phase 2 Randomized Clinical Trial. JAMA Oncol. 2023;9:825–34.

    Article  PubMed  Google Scholar 

  17. Ost P, Reynders D, Decaestecker K, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol. 2018;36:446–53.

    Article  CAS  PubMed  Google Scholar 

  18. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378:1767–77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Emmett L, Buteau J, Papa N, et al. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): A prospective multicentre study. Eur Urol. 2021;80:682–9.

    Article  CAS  PubMed  Google Scholar 

  20. • Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395:1208–16. Randomized study showing PSMA PET for initial staging improved disease detection and altered management frequently.

    Article  CAS  PubMed  Google Scholar 

  21. Sonni I, Eiber M, Fendler WP, et al. Impact of 68Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single center study. J Nucl Med. 2020. https://doi.org/10.2967/JNUMED.119.237602.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Hope TA, Eiber M, Armstrong WR, et al. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol. 2021. https://doi.org/10.1001/jamaoncol.2021.3771. Prospective study showing the accuracy of PSMA PET for detecting nodal disease at the time of surgery and formed the basis for FDA approval.

    Article  PubMed  PubMed Central  Google Scholar 

  23. • Pienta KJ, Gorin MA, Rowe SP, et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol. 2021;206:52–61. Prospective trial evaluating the accuracy of 18F-DCFPyL for both primary staging and biochemical recurrence.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Surasi DS, Eiber M, Maurer T, et al. Diagnostic performance and safety of positron emission tomography with 18F-rhPSMA-7.3 in patients with newly diagnosed unfavourable intermediate- to very-high-risk prostate cancer: results from a phase 3, prospective, multicentre study (LIGHTHOUSE). Eur Urol. 2023;84:361–70. Prospective trial evaluating the accuracy of 18F-rhPSMA-7.3 for primary staging patients with unfavorable intermediate to very high risk PCa.

    Article  CAS  PubMed  Google Scholar 

  25. Chow KM, So WZ, Lee HJ, et al. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: a systematic review and meta-analysis. Eur Urol. 2023;84:36–48.

    Article  PubMed  Google Scholar 

  26. Sonni I, Felker ER, Lenis AT, et al. Head-to-Head Comparison of 68Ga-PSMA-11 PET/CT and mpMRI with a histopathology gold standard in the detection, intraprostatic localization, and determination of local extension of primary prostate cancer: results from a prospective single-center imaging trial. J Nucl Med. 2022;63:847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berger I, Annabattula C, Lewis J, et al. 68Ga-PSMA PET/CT vs. mpMRI for locoregional prostate cancer staging: correlation with final histopathology. Prostate Cancer Prostatic Dis. 2018;21:204–11.

    Article  CAS  PubMed  Google Scholar 

  28. Schaeffer EM, Srinivas S, Adra N, et al. NCCN Guidelines® Insights: prostate cancer, Version 1.2023. J Natl Compr Canc Netw. 2022;20:1288–98.

    PubMed  Google Scholar 

  29. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  30. • Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63. First large prospective trial establishing the abilities of 68Ga-PSMA-11 PET for localizing recurrence following primary treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res. 2021;27:3674–82. Randomized study which characterized the ability of PSMA PET to localize recurrences after primary treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Jani AB, Ravizzini GC, Gartrell BA, et al. Diagnostic performance and safety of 18F-rhPSMA-7.3 positron emission tomography in men with suspected prostate cancer recurrence: results from a phase 3, prospective, multicenter study (SPOTLIGHT). J Urol. 2023;210:299–311. Prospective trial evaluating the accuracy of 18F-rhPSMA-7.3 for detecting recurrences in patients following primary treatment.

    Article  PubMed  Google Scholar 

  33. Pozdnyakov A, Kulanthaivelu R, Bauman G, Ortega C, Veit-Haibach P, Metser U. The impact of PSMA PET on the treatment and outcomes of men with biochemical recurrence of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2023;26:240–8.

    Article  CAS  PubMed  Google Scholar 

  34. Emmett L, Van Leeuwen PJ, Nandurkar R, et al. Treatment outcomes from 68Ga-PSMA PET/CT-informed salvage radiation treatment in men with rising PSA after radical prostatectomy: Prognostic value of a negative PSMA PET. J Nucl Med. 2017;58:1972–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zamboglou C, Peeken JC, Janbain A, et al. Development and validation of a multi-institutional nomogram of outcomes for PSMA-PET–based salvage radiotherapy for recurrent prostate cancer. JAMA Netw Open. 2023;6:e2314748.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Calais J, Czernin J, Cao M, et al. 68Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. J Nucl Med. 2018;59:230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calais J, Armstrong WR, Kishan AU, Booker KM, Hope TA, Fendler WP, Elashoff D, Nickols NG, Czernin J. Update from PSMA-SRT trial NCT03582774: a randomized phase 3 imaging trial of prostate-specific membrane antigen positron emission tomography for salvage radiation therapy for prostate cancer recurrence powered for clinical outcome. Eur Urol Focus. 2021;7:238–40.

    Article  PubMed  Google Scholar 

  38. Tosoian JJ, Gorin MA, Ross AE, Pienta KJ, Tran PT, Schaeffer EM. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat Rev Urol. 2017;14:15–25.

    Article  CAS  PubMed  Google Scholar 

  39. Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8:378–82.

    Article  CAS  PubMed  Google Scholar 

  40. Glicksman RM, Metser U, Vines D, et al. Curative-intent metastasis-directed therapies for molecularly-defined oligorecurrent prostate cancer: a prospective phase II trial testing the oligometastasis hypothesis [formula presented]. Eur Urol. 2021;80:374–82.

    Article  CAS  PubMed  Google Scholar 

  41. Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. New Engl J Med. 2015;373:737–46.

    Article  CAS  PubMed  Google Scholar 

  42. Culp SH, Schellhammer PF, Williams MB. Might men diagnosed with metastatic prostate cancer benefit from definitive treatment of the primary tumor? A SEER-based study. Eur Urol. 2014;65:1058–66.

    Article  PubMed  Google Scholar 

  43. Dai B, Zhang S, Wan F-N, et al. Combination of androgen deprivation therapy with radical local therapy versus androgen deprivation therapy alone for newly diagnosed oligometastatic prostate cancer: a phase II randomized controlled trial. Eur Urol Oncol. 2022;5:519–25.

    Article  PubMed  Google Scholar 

  44. Rajwa P, Zattoni F, Maggi M, et al. Cytoreductive radical prostatectomy for metastatic hormone-sensitive prostate cancer-evidence from recent prospective reports. Eur Urol Focus. 2023;9:637–41.

    Article  PubMed  Google Scholar 

  45. Bossi A, Foulon S, Maldonado X, et al. Prostate irradiation in men with de novo, low-volume, metastatic, castration-sensitive prostate cancer (mCSPC): results of PEACE-1, a phase 3 randomized trial with a 2x2 design. JCO. 2023;41:LBA5000–LBA5000.

    Article  Google Scholar 

  46. Deek MP, Van der Eecken K, Sutera P, et al. Long-term outcomes and genetic predictors of response to metastasis-directed therapy versus observation in oligometastatic prostate cancer: analysis of STOMP and ORIOLE trials. J Clin Oncol. 2022;40:3377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasan H, Deek MP, Phillips R, et al. A phase II randomized trial of radium-223 dichloride and SABR versus SABR for oligometastatic prostate cancers (RAVENS). BMC Cancer. 2020. https://doi.org/10.1186/s12885-020-07000-2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ma TM, Czernin J, Felix C, et al. LUNAR: a randomized phase 2 study of 177 lutetium-PSMA neoadjuvant to ablative radiotherapy for oligorecurrent prostate cancer (clinical trial protocol). BJU Int. 2023;132:65–74.

    Article  CAS  PubMed  Google Scholar 

  49. Fizazi K, Foulon S, Carles J, et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet. 2022;399:1695–707.

    Article  CAS  PubMed  Google Scholar 

  50. Smith MR, Hussain M, Saad F, et al. Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. N Engl J Med. 2022;386:1132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aggarwal RR, Heller G, Hillman DW, et al. Baseline characteristics associated with PSA progression-free survival in patients (pts) with high-risk biochemically relapsed prostate cancer: Results from the phase 3 PRESTO study (AFT-19). JCO. 2023;41:208–208.

    Article  Google Scholar 

  52. Freedland SJ, De Giorgi U, Gleave M, Rosbrook B, Shen Q, Sugg J, Haas GP, Shore ND. A phase 3 randomised study of enzalutamide plus leuprolide and enzalutamide monotherapy in high-risk non-metastatic hormone-sensitive prostate cancer with rising PSA after local therapy: EMBARK study design. BMJ Open. 2021. https://doi.org/10.1136/bmjopen-2020-046588.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ferdinandus J, Fendler WP, Farolfi A, et al. PSMA PET validates higher rates of metastatic disease for European Association of Urology biochemical recurrence risk groups: an international multicenter study. J Nucl Med. 2022;63:76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jani AB, Schreibmann E, Goyal S, et al. 18F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet. 2021;397:1895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fizazi K, Shore N, Tammela TL, et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. New Engl J Med. 2020;383:1040–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sternberg CN, Fizazi K, Saad F, et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. New Engl J Med. 2020;382:2197–206.

    Article  CAS  PubMed  Google Scholar 

  57. Smith MR, Saad F, Chowdhury S, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. New Engl J Med. 2018;378:1408–18.

    Article  CAS  PubMed  Google Scholar 

  58. Fendler WP, Weber M, Iravani A, et al. Prostate-specific membrane antigen ligand positron emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin Cancer Res. 2019;25:7448–54.

    Article  CAS  PubMed  Google Scholar 

  59. Wang B, Liu C, Wei Y, et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res. 2020;26:4551–8.

    Article  CAS  PubMed  Google Scholar 

  60. Ali A, Hoyle A, Haran ÁM, et al. Association of bone metastatic burden with survival benefit from prostate radiotherapy in patients with newly diagnosed metastatic prostate cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2021;7:555–63.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scher HI, Morris MJ, Stadler WM, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34:1402–18.

    Article  PubMed  PubMed Central  Google Scholar 

  62. • Gafita A, Rauscher I, Weber M, et al. Novel framework for treatment response evaluation using PSMA PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP 1.0): An International Multicenter Study. J Nucl Med. 2022;63:1651–8. Retrospective study establishing a framework for disease treatment response based on PSMA PET imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gafita A, Rauscher I, Fendler WP, et al. Measuring response in metastatic castration-resistant prostate cancer using PSMA PET/CT: comparison of RECIST 1.1, aPCWG3, aPERCIST, PPP, and RECIP 1.0 criteria. Eur J Nucl Med Mol Imaging. 2022;49:4271–81.

    Article  CAS  PubMed  Google Scholar 

  64. Gafita A, Djaileb L, Rauscher I, et al. Response evaluation criteria in PSMA PET/CT (RECIP 1.0) in metastatic castration-resistant prostate cancer. Radiology. 2023;308:e222148.

    Article  PubMed  Google Scholar 

  65. Denis CS, Cousin F, Laere BD, Hustinx R, Sautois BR, Withofs N. Using 68Ga-PSMA-11 PET/CT for Therapy response assessment in patients with metastatic castration-resistant prostate cancer: application of EAU/EANM recommendations in clinical practice. J Nucl Med. 2022;63:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murthy V, Gafita A, Thin P, Nguyen K, Grogan T, Shen J, Drakaki A, Rettig M, Czernin J, Calais J. Prognostic value of end-of-treatment PSMA PET/CT in patients treated with 177Lu-PSMA radioligand therapy: a retrospective, single-center analysis. J Nucl Med. 2023;64:1737–43.

    Article  CAS  PubMed  Google Scholar 

  67. Emmett L, John N, Pathmanandavel S, et al. Patient outcomes following a response biomarker-guided approach to treatment using 177Lu-PSMA-I&T in men with metastatic castrate-resistant prostate cancer (Re-SPECT). Ther Adv Med Oncol. 2023;15:17588359231156392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. •• Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091–103. Randomized study which showed PSMA-based radioligand therapy prolonged overall survival for advanced PCa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fallah J, Agrawal S, Gittleman H, et al. FDA Approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29:1651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397:797–804.

    Article  CAS  PubMed  Google Scholar 

  71. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825–33.

    Article  CAS  PubMed  Google Scholar 

  72. Hotta M, Gafita A, Czernin J, Calais J. Outcome of patients with PSMA PET/CT screen failure by VISION criteria and treated with 177Lu-PSMA therapy: a multicenter retrospective analysis. J Nucl Med. 2022;63:1484–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kuo PH, Yoo DC, Avery R, et al. A VISION substudy of reader agreement on 68Ga-PSMA-11 PET/CT scan interpretation to determine patient eligibility for 177Lu-PSMA-617 radioligand therapy. J Nucl Med. 2023;64:1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thang SP, Violet J, Sandhu S, et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2019;2:670–6.

    Article  PubMed  Google Scholar 

  75. • Gafita A, Calais J, Grogan TR, et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 2021;22:1115–25.  Retrospective study establishing a nomogram for predicting response to PSMA-based radioligand therapy.

    Article  CAS  PubMed  Google Scholar 

  76. Current K, Meyer C, Magyar CE, et al. Investigating PSMA-targeted radioligand therapy efficacy as a function of cellular PSMA levels and intratumoral PSMA heterogeneity. Clin Cancer Res. 2020;26:2946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gafita A, Marcus C, Kostos L, Schuster DM, Calais J, Hofman MS. Predictors and real-world use of prostate-specific radioligand therapy: PSMA and beyond. Am Soc Clin Oncol Educ Book. 2022;42:1–17.

    PubMed  Google Scholar 

  78. Hotta M, Gafita A, Murthy V, et al. PSMA PET tumor-to-salivary gland ratio to predict response to [177Lu]PSMA radioligand therapy: an international multicenter retrospective study. J Nucl Med. 2023;64:1024–9.

    Article  CAS  PubMed  Google Scholar 

  79. Seifert R, Seitzer K, Herrmann K, Kessel K, Schäfers M, Kleesiek J, Weckesser M, Boegemann M, Rahbar K. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving 177Lu-PSMA-617 radioligand therapy. Theranostics. 2020;10:7812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bakht MK, Yamada Y, Ku S-Y, et al. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. Nat Cancer. 2023. https://doi.org/10.1038/s43018-023-00539-6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10:eaag3326.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pepe P, Pennisi M. Targeted biopsy in men high risk for prostate cancer: 68Ga-PSMA PET/CT Versus mpMRI. Clin Genitourin Cancer. 2023;S1558–7673(23):00146–55.

    Google Scholar 

Download references

Funding

ABW was supported by the Simon-Strauss Foundation, the UCLA Dr. Allen and Charlotte Ginsburg Fellowship in Precision Genomic Medicine, and the Prostate Cancer Foundation Young Investigator Award. RA was supported by NIH/NIGMS grant T32GM008042 (RA). PCB was supported by NIH grants U2CCA271894, P30CA016042, and R01CA270108 and by DOD PCRP grants W81XWH2210247 and W81XWH2210751. This work was also supported by the UCLA NIH SPORE in Prostate Cancer (P50CA09213).

Author information

Authors and Affiliations

Authors

Contributions

ABW and RER made substantial contributions to the conception or design of the work. ABW and RA drafted the work. LFV, IS, AUK, MBR, SSR, JC, PCB, and RER revised the work critically for important intellectual content. All authors approved the version to be published. ABW and RER agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Adam B. Weiner MD.

Ethics declarations

Conflict of interest

LFV receives salary and research support from the Bristol Myers Squibb foundation for work indirectly related to this manuscript.

PCB sits on the Scientific Advisory Boards of Sage Bionetworks, Intersect Diagnostics Inc. and BioSymetrics Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, A., Agrawal, R., Valle, L. et al. Impact of PSMA PET on Prostate Cancer Management. Curr. Treat. Options in Oncol. 25, 191–205 (2024). https://doi.org/10.1007/s11864-024-01181-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-024-01181-9

Keywords

Navigation