Skip to main content

Advertisement

Log in

Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs’ function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mehralizadeh H, et al. Cytokine sustained delivery for cancer therapy; special focus on stem cell-and biomaterial-based delivery methods. Pathol-Res Pract. 2023;247:154528.

  2. Shabani S, Moghadam MF, Gargari SL. Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol. 2021;38(9):115.

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, et al. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaboli PJ, et al. Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J Cancer Res. 2022;12(4):1671.

  5. Carlson RD, Flickinger JC Jr, Snook AE. Talkin’toxins: from Coley’s to modern cancerimmunotherapy. Toxins. 2020;12(4):241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. This review discussed how current approaches apply DC vaccines to improve anti-tumor immunity in clinic.

    Article  CAS  PubMed  Google Scholar 

  7. Okamoto M, et al. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 2016;7(1):133.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.

    Article  CAS  PubMed  Google Scholar 

  9. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.

    Article  CAS  PubMed  Google Scholar 

  10. • Plumas J. Harnessing dendritic cells for innovative therapeutic cancer vaccines. Curr Opin Oncol. 2022;34(2):161–8. This article reviewed recent research using allogeneic DCs as alternatives to autologous DCs to develop innovative therapeutic cancer vaccines.

    Article  CAS  PubMed  Google Scholar 

  11. Abbasi S, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies. Cancer Med. 2023;12(7):7844–58.

    Article  CAS  PubMed  Google Scholar 

  12. Kozani PS, Shabani S. Adverse events and side effects of chimeric antigen receptor (CAR) t cell therapy in patients with hematologic malignancies. Trends Med Sci. 2021;1(1):620374.

  13. Saxena M, et al. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.

    Article  CAS  PubMed  Google Scholar 

  14. Andtbacka RH, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ribas A, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):1031–2.

    Article  CAS  PubMed  Google Scholar 

  16. Harari A, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–52.

    Article  CAS  PubMed  Google Scholar 

  17. Tolouei AE, et al. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep. 2023:1–9.

  18. Fu C, et al. DC-based vaccines for cancer immunotherapy Vaccines. 2020;8(4):706.

    CAS  PubMed  Google Scholar 

  19. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guermonprez P, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20(1):621–67.

    Article  CAS  PubMed  Google Scholar 

  21. Patente TA, et al. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;9:3176.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17(6):587–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wculek SK, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. This article reviewed different DC subsets immunity and tolerance in cancer settings and immunotherapy strategies.

    Article  CAS  PubMed  Google Scholar 

  24. Anderson DA III, et al. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol. 2021;21(2):101–15.

    Article  CAS  PubMed  Google Scholar 

  25. Villani AC, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356(6335):eaah4573.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haniffa M, Collin M, Ginhoux F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv Immunol. 2013;120:1–49.

    Article  CAS  PubMed  Google Scholar 

  28. Haniffa M, Collin M, Ginhoux F. Identification of human tissue cross-presenting dendritic cells: a new target for cancer vaccines. Oncoimmunol. 2013;2(3): e23140.

    Article  Google Scholar 

  29. Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ DCs represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown CC, et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell. 2019;179(4):846–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamazaki C, et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 2013;190(12):6071–82.

    Article  CAS  PubMed  Google Scholar 

  32. Dhodapkar MV, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonaccorsi I, et al. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett. 2013;155(1–2):6–10.

    Article  CAS  PubMed  Google Scholar 

  35. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33(4):464–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banchereau J, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61(17):6451–8.

    CAS  PubMed  Google Scholar 

  37. Mody N, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32.

    Article  CAS  PubMed  Google Scholar 

  38. Trefzer U, et al. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int J Cancer. 2000;85(5):618–26.

    Article  CAS  PubMed  Google Scholar 

  39. Trefzer U, et al. Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: immunological effects and clinical results. Vaccine. 2005;23(17–18):2367–73.

    Article  CAS  PubMed  Google Scholar 

  40. Krause SW, et al. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother. 2002;25(5):421–8.

    Article  CAS  PubMed  Google Scholar 

  41. Maeng HM, et al. Phase I clinical trial of an autologous dendritic cell vaccine against HER2 shows safety and preliminary clinical efficacy. Front Oncol. 2021;11: 789078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aspord C, et al. HLA-A* 0201+ plasmacytoid dendritic cells provide a cell-based immunotherapy for melanoma patients. J Invest Dermatol. 2012;132(10):2395–406.

    Article  CAS  PubMed  Google Scholar 

  43. Fabre JW. The allogeneic response and tumor immunity. Nat Med. 2001;7(6):649–52.

    Article  CAS  PubMed  Google Scholar 

  44. Bol KF, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019;7(1):1–3. This article discussed recent clinical developments and future prospects of natural DC-based immunotherapy.

    Article  Google Scholar 

  45. Kikuchi T, et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother. 2004;27(6):452–9.

    Article  CAS  PubMed  Google Scholar 

  46. Homma S, et al. Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin Exp Immunol. 2006;144(1):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akasaki Y, et al. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother. 2001;24(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  48. Haenssle HA, et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase I/II study. J Immunother. 2004;27(2):147–55.

    Article  PubMed  Google Scholar 

  49. Avigan DE, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother. 2007;30(7):749–61.

    Article  PubMed  Google Scholar 

  50. Vo MC, et al. Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol. 2017;46:48–55.

    Article  CAS  PubMed  Google Scholar 

  51. Sakamaki I, et al. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28(2):329–37.

    Article  CAS  PubMed  Google Scholar 

  52. Nahas MR, et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br J Haematol. 2019;185(4):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenblatt J, et al. PD-1 blockade by CT-011, anti PD-1 antibody, enhances ex-vivo T cell responses to autologous dendritic/myeloma fusion vaccine. J Immunother. 2011;34(5):409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Isazadeh A, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: focus on myeloma. J Cell Physiol. 2021;236(2):791–805.

  55. Ghahremani Dehbokri S, et al. CTLA-4: as an immunosuppressive immune checkpoint in breast cancer. Cur Mol Med. 2023;23(6):521–6.

  56. Nagle SJ, Garfall AL, Stadtmauer EA. The promise of chimeric antigen receptor engineered T cells in the treatment of hematologic malignancies. Cancer J. 2016;22(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu YZ, Zhao X, Song XR. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin. 2020;41(7):959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anguille S, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731–53.

    Article  CAS  PubMed  Google Scholar 

  59. Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy. 2014;6(4):485–96.

    Article  CAS  PubMed  Google Scholar 

  60. Rodríguez-Ruiz ME, et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol. 2018;29(5):1312–9.

    Article  PubMed  Google Scholar 

  61. Amberger DC, Schmetzer HM. Dendritic cells of leukemic origin: specialized antigen-presenting cells as potential treatment tools for patients with myeloid leukemia. Transfus Med Hemother. 2020;47(6):432–43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fong L, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166(6):4254–9.

    Article  CAS  PubMed  Google Scholar 

  63. Morse MA, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 1999;5(6):1331–8.

    CAS  PubMed  Google Scholar 

  64. Barratt-Boyes SM, Watkins SC, Finn OJ. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv Exp Med Biol. 1997;417:71–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ando K, et al. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. J Radiat Res. 2017;58(4):446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gargett T, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother. 2018;67(9):1461–72.

    Article  CAS  PubMed  Google Scholar 

  67. Schmitt A, Hus I, Schmitt M. Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther. 2007;7(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  68. Gilliet M, et al. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses to protein neoantigen. Blood. 2003;102(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  69. Willekens B, et al. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open. 2019;9(9): e030309.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morisaki T, et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest. 2021;50(5):562–79.

    Article  CAS  PubMed  Google Scholar 

  71. Castro JE, et al. Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res. 2012;72(12):2937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karthaus N, Torensma R, Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 2012;181(3):733–42.

    Article  CAS  PubMed  Google Scholar 

  73. Isazadeh H, et al. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep. 2023:1–5.

  74. Zhang Y, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021;14(1):1–26.

    Article  CAS  Google Scholar 

  75. Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol. 2021;14(1):1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother. 2004;53:275–306.

    Article  PubMed  Google Scholar 

  77. Cui Y, et al. Immune response, clinical outcome and safety of dendritic cell vaccine in combination with cytokine-induced killer cell therapy in cancer patients. Oncol Lett. 2013;6(2):537–41.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Amos SM, et al. Autoimmunity associated with immunotherapy of cancer. Blood, The Journal of the American Society of Hematology. 2011;118(3):499–509.

    CAS  Google Scholar 

  79. Leonhartsberger N, et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012;61:1407–13.

    Article  CAS  PubMed  Google Scholar 

  80. Madan RA, et al. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist. 2010;15(9):969–75.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Aarntzen EH, et al. Targeting CD4+ T-helper cells improves the induction of antitumor responses in dendritic cell–based vaccination. Cancer Res. 2013;73(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  82. Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063–75.

    Article  CAS  PubMed  Google Scholar 

  83. Roddie H, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006;133(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  84. Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020;38(22):3811–20.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao W, Zhao G, Wang B. Revisiting GM-CSF as an adjuvant for therapeutic vaccines. Cell Mol Immunol. 2018;15(2):187–9.

    Article  CAS  PubMed  Google Scholar 

  86. Bondanza A, et al. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med. 2004;200(9):1157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O’Brien LJ, Guillerey C, Radford KJ. Can dendritic cell vaccination prevent leukemia relapse? Cancers. 2019;11(6):875.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.

    Article  CAS  PubMed  Google Scholar 

  89. van Beek JJ, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016;5(10): e1227902.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van Acker HH, et al. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget. 2017;8(8):13652.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Van Ee TJ, et al. BDCA1+ CD14+ immunosuppressive cells in cancer, a potential target? Vaccines. 2018;6(3):65.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Curti A, et al. Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95(12):2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Draube A, et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE. 2011;6(4): e18801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carreno BM, et al. IL-12p70–producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest. 2013;123(8):3383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Breton G, et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J Exp Med. 2015;212(3):401–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bennaceur K, et al. Dendritic cells dysfunction in tumour environment. Cancer Lett. 2008;272(2):186–96.

    Article  CAS  PubMed  Google Scholar 

  97. Bronte V, Mocellin S. Suppressive influences in the immune response to cancer. J Immunother. 2009;32(1):1–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.T. conceived and directed the project, contributed to the content discussion, and reviewed and edited the article. P.L. drafted the article, and L.J. and X.B. reviewed and edited the article and contributed to the content discussion.

Corresponding author

Correspondence to Shutao Tan M.D.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Jia, L., Bian, X. et al. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr. Treat. Options in Oncol. 24, 1703–1719 (2023). https://doi.org/10.1007/s11864-023-01143-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01143-7

Keywords

Navigation