Skip to main content

Advertisement

Log in

Therapeutic Cancer Vaccines for Nonmelanoma Skin Cancer

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The development of immunotherapies for nonmelanoma skin cancer (NMSC) has lagged far behind that for melanoma in the past few decades, given that the majority of cases are surgically curable. Nevertheless, given the steady growth in the incidence rate of NMSC and attendant increase in patients with unresectable or advanced-stage tumors, the demand for systemic therapy is noticeably increasing. To date, the most widely used immunotherapeutic strategies, including immune checkpoint inhibitors and T-cell therapy, have obtained satisfactory results in some patients but not others. Even with an objective response in a fraction of patients, some accompanying adverse events may lead to intolerance and noncompliance. The expanding understanding of immune surveillance and tumor escape has provided us with novel perspectives in the field of immunotherapy. One emerging approach, the therapeutic cancer vaccine, encompasses the potential to newly “prime” T cells by activating antigen presentation in regional lymph nodes and the tumor microenvironment. Immune cells are therefore preconditioned and awakened to be ready to attack tumors. In NMSCs, multiple clinical trials of cancer vaccines are underway. The vaccine targets include tumor-associated antigens, tumor-specific antigens, oncolytic viruses, and toll-like receptors. Although clinical benefits have been shown in specific case reports and trials, various challenges remain to be resolved to guarantee applicability in the general patient population. Standing on the shoulders of pioneers expedites the pace of advances in therapeutic cancer vaccines, making them the rising star in the field of immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ciążyńska M, Kamińska-Winciorek G, Lange D, Lewandowski B, Reich A, Sławińska M, et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci Rep. 2021;11(1):4337. https://doi.org/10.1038/s41598-021-83502-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu W, Fang L, Ni R, Zhang H, Pan G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer. 2022;22(1):836. https://doi.org/10.1186/s12885-022-09940-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mushtaq S. The immunogenetics of non-melanoma skin cancer. Adv Exp Med Biol. 2022;1367:397–409. https://doi.org/10.1007/978-3-030-92616-8_16.

    Article  PubMed  Google Scholar 

  4. Aggarwal P, Knabel P, Fleischer AB Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol. 2021;85(2):388–95. https://doi.org/10.1016/j.jaad.2021.03.109.

    Article  PubMed  Google Scholar 

  5. Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U. S., 2002–2006 and 2007–2011. Am J Prev Med. 2015;48(2):183–7. https://doi.org/10.1016/j.amepre.2014.08.036.

    Article  PubMed  Google Scholar 

  6. Cameron MC, Lee E, Hibler BP, Barker CA, Mori S, Cordova M, et al. Basal cell carcinoma: epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol. 2019;80(2):303–17. https://doi.org/10.1016/j.jaad.2018.03.060.

    Article  PubMed  Google Scholar 

  7. Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78(2):237–47. https://doi.org/10.1016/j.jaad.2017.08.059.

    Article  PubMed  Google Scholar 

  8. McEvoy AM, Lachance K, Hippe DS, Cahill K, Moshiri Y, Lewis CW, et al. Recurrence and mortality risk of merkel cell carcinoma by cancer stage and time from diagnosis. JAMA Dermatol. 2022;158(4):382–9. https://doi.org/10.1001/jamadermatol.2021.6096.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA: A Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  Google Scholar 

  10. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (New York, NY). 2015;350(6257):207–11. https://doi.org/10.1126/science.aad0095.

    Article  CAS  Google Scholar 

  11. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093.

    Article  CAS  PubMed  Google Scholar 

  12. Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am. 2000;6(Suppl 1):S11–4.

    PubMed  Google Scholar 

  13. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80. https://doi.org/10.1200/jco.2001.19.9.2370.

    Article  CAS  PubMed  Google Scholar 

  14. Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP, Rosati SF, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013;31(17):2152–9. https://doi.org/10.1200/jco.2012.46.6441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–26. https://doi.org/10.1038/s43018-022-00418-6. (This review classifies cancer vaccines by their target antigens, specifies the pros and cons of each type, and further emphasizes the importance of immune monitoring to recognize how failures occur and how future advances can be achieved).

    Article  CAS  PubMed  Google Scholar 

  16. Kandalaft LE, Harari A. Vaccines as priming tools for T cell therapy for epithelial cancers. Cancers. 2021;13(22). https://doi.org/10.3390/cancers13225819.

  17. •• Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78. https://doi.org/10.1038/s41568-021-00346-0. (This review lists the advantages and pitfalls in development of therapeutic cancer vaccines, discusses the previous successes as well as failures, and proposes strategies to enhance the efficacy of cancer vaccine).

    Article  CAS  PubMed  Google Scholar 

  18. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. https://doi.org/10.1200/jco.2014.58.3377.

    Article  CAS  PubMed  Google Scholar 

  19. Andtbacka RHI, Curti BD, Kaufman H, Daniels GA, Nemunaitis JJ, Spitler LE, et al. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol. 2015;33(15_suppl):9030. https://doi.org/10.1200/jco.2015.33.15_suppl.9030.

  20. Andtbacka RH, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, et al. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. J Clin Oncol.2017;35(15_suppl):9510. https://doi.org/10.1200/JCO.2017.35.15_suppl.9510.

  21. Diab A, Haymaker C, Bernatchez C, Andtbacka R, Shaheen M, Johnson D, et al. Intratumoral (it) injection of the TLR9 agonist tilsotolimod (IMO-2125) in combination with ipilimumab (IPI) triggers durable responses in PD-1 inhibitor refractory metastatic melanoma (rMM): results from a multicenter, phase I/II study. Ann Oncol. 2018;29:viii442. https://doi.org/10.1093/annonc/mdy289.001.

  22. Milhem MM, Long GV, Hoimes CJ, Amin A, Lao CD, Conry RM, et al. Phase 1b/2, open label, multicenter, study of the combination of SD-101 and pembrolizumab in patients with advanced melanoma who are naïve to anti-PD-1 therapy. J Clin Oncol. 2018;36(15_suppl):9513. https://doi.org/10.1200/JCO.2018.36.15_suppl.9513

  23. Chick RC, Faries MB, Hale DF, Kemp Bohan PM, Hickerson AT, Vreeland TJ, et al. Multi-institutional, prospective, randomized, double-blind, placebo-controlled phase IIb trial of the tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine to prevent recurrence in high-risk melanoma patients: a subgroup analysis. Cancer Med. 2021;10(13):4302–11. https://doi.org/10.1002/cam4.3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. International journal of molecular sciences. 2019;20(8). https://doi.org/10.3390/ijms20081811.

  26. Ryland GL, Hunter SM, Doyle MA, Caramia F, Li J, Rowley SM, et al. Erratum to: Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 2017;9(1):1. https://doi.org/10.1186/s13073-016-0392-y.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T. Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol. 2010;130(5):1419–27. https://doi.org/10.1038/jid.2009.429.

    Article  CAS  PubMed  Google Scholar 

  28. Loser K, Apelt J, Voskort M, Mohaupt M, Balkow S, Schwarz T, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J Immunol (Baltimore, Md: 1950). 2007;179(1):365–71. https://doi.org/10.4049/jimmunol.179.1.365.

    Article  CAS  Google Scholar 

  29. Schwarz T. Regulatory T cells induced by ultraviolet radiation. Int Arch Allergy Immunol. 2005;137(3):187–93. https://doi.org/10.1159/000086330.

    Article  PubMed  Google Scholar 

  30. Suwanpradid J, Holcomb ZE, MacLeod AS. Emerging skin T-cell functions in response to environmental insults. J Invest Dermatol. 2017;137(2):288–94. https://doi.org/10.1016/j.jid.2016.08.013.

    Article  CAS  PubMed  Google Scholar 

  31. Lindelöf B, Sigurgeirsson B, Gäbel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143(3):513–9.

    PubMed  Google Scholar 

  32. Rangwala S, Tsai KY. Roles of the immune system in skin cancer. Br J Dermatol. 2011;165(5):953–65. https://doi.org/10.1111/j.1365-2133.2011.10507.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hartevelt MM, Bavinck JN, Kootte AM, Vermeer BJ, Vandenbroucke JP. Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation. 1990;49(3):506–9. https://doi.org/10.1097/00007890-199003000-00006.

    Article  CAS  PubMed  Google Scholar 

  34. Koljonen V, Kukko H, Tukiainen E, Böhling T, Sankila R, Pukkala E, et al. Incidence of Merkel cell carcinoma in renal transplant recipients. Nephrol Dial Transplant. 2009;24(10):3231–5. https://doi.org/10.1093/ndt/gfp334.

    Article  PubMed  Google Scholar 

  35. Martinez JC, Otley CC, Stasko T, Euvrard S, Brown C, Schanbacher CF, et al. Defining the clinical course of metastatic skin cancer in organ transplant recipients: a multicenter collaborative study. Arch Dermatol. 2003;139(3):301–6. https://doi.org/10.1001/archderm.139.3.301.

    Article  PubMed  Google Scholar 

  36. Lanz J, Bouwes Bavinck JN, Westhuis M, Quint KD, Harwood CA, Nasir S, et al. Aggressive squamous cell carcinoma in organ transplant recipients. JAMA Dermatol. 2019;155(1):66–71. https://doi.org/10.1001/jamadermatol.2018.4406.

    Article  PubMed  Google Scholar 

  37. Ducloux D, Carron PL, Rebibou JM, Aubin F, Fournier V, Bresson-Vautrin C, et al. CD4 lymphocytopenia as a risk factor for skin cancers in renal transplant recipients. Transplantation. 1998;65(9):1270–2. https://doi.org/10.1097/00007890-199805150-00022.

    Article  CAS  PubMed  Google Scholar 

  38. Otley CC, Berg D, Ulrich C, Stasko T, Murphy GM, Salasche SJ, et al. Reduction of immunosuppression for transplant-associated skin cancer: expert consensus survey. Br J Dermatol. 2006;154(3):395–400. https://doi.org/10.1111/j.1365-2133.2005.07087.x.

    Article  CAS  PubMed  Google Scholar 

  39. Asgari MM, Ray GT, Quesenberry CP Jr, Katz KA, Silverberg MJ. Association of multiple primary skin cancers with human immunodeficiency virus infection, CD4 count, and viral load. JAMA Dermatol. 2017;153(9):892–6. https://doi.org/10.1001/jamadermatol.2017.1716.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Onajin O, Brewer JD. Skin cancer in patients with chronic lymphocytic leukemia and non-Hodgkin lymphoma. Clin Adv Hematol Oncol: H&O. 2012;10(9):571–6.

    Google Scholar 

  41. Marcil I, Stern RS. Squamous-cell cancer of the skin in patients given PUVA and ciclosporin: nested cohort crossover study. Lancet (London, England). 2001;358(9287):1042–5. https://doi.org/10.1016/s0140-6736(01)06179-7.

    Article  CAS  PubMed  Google Scholar 

  42. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397(6719):530–4. https://doi.org/10.1038/17401.

    Article  CAS  PubMed  Google Scholar 

  43. Borghi-Cirri MB, Riccardi-Arbi R, Bacci S, Mori M, Pimpinelli N, Romagnoli P, et al. Inhibited differentiation of Langerhans cells in the rat epidermis upon systemic treatment with cyclosporin A. Histol Histopathol. 2001;16(1):107–12. https://doi.org/10.14670/hh-16.107.

    Article  CAS  PubMed  Google Scholar 

  44. Hagen JW, Pugliano-Mauro MA. Nonmelanoma skin cancer risk in patients with inflammatory bowel disease undergoing thiopurine therapy: a systematic review of the literature. Dermatol Surg. 2018;44(4):469–80. https://doi.org/10.1097/dss.0000000000001455.

    Article  CAS  PubMed  Google Scholar 

  45. Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG, et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat Commun. 2018;9(1):3667. https://doi.org/10.1038/s41467-018-06027-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7. https://doi.org/10.1038/s41541-019-0103-y. (This article discusses the different combinations of cancer vaccines with other therapies and explains how respective strategy attain synergic effects).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Walter A, Barysch MJ, Behnke S, Dziunycz P, Schmid B, Ritter E, et al. Cancer-testis antigens and immunosurveillance in human cutaneous squamous cell and basal cell carcinomas. Clin Cancer Res. 2010;16(14):3562–70. https://doi.org/10.1158/1078-0432.Ccr-09-3136.

    Article  CAS  PubMed  Google Scholar 

  48. Papanikolaou S, Bravou V, Gyftopoulos K, Nakas D, Repanti M, Papadaki H. ILK expression in human basal cell carcinoma correlates with epithelial-mesenchymal transition markers and tumour invasion. Histopathology. 2010;56(6):799–809. https://doi.org/10.1111/j.1365-2559.2010.03556.x.

    Article  PubMed  Google Scholar 

  49. Koch P, Stenzinger A, Viard M, Märker D, Mayser P, Nilles M, et al. The novel protein PTPIP51 is expressed in human keratinocyte carcinomas and their surrounding stroma. J Cell Mol Med. 2008;12(5b):2083–95. https://doi.org/10.1111/j.1582-4934.2008.00198.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leffell DJ. The scientific basis of skin cancer. J Am Acad Dermatol. 2000;42(1 Pt 2):18–22. https://doi.org/10.1067/mjd.2000.103340.

    Article  CAS  PubMed  Google Scholar 

  51. •• Hall ET, Fernandez-Lopez E, Silk AW, Dummer R, Bhatia S. Immunologic characteristics of nonmelanoma skin cancers: implications for immunotherapy. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Ann Meet. 2020;40:1–10. https://doi.org/10.1200/edbk_278953.6. (This review article describes the immunologic characteristics of each NMSC subtype in detail, and briefly summarizes important ongoing trials. It explains the rationale for application of immunotherapy in NMSCs).

    Article  Google Scholar 

  52. Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog. 2017;56(12):2543–57. https://doi.org/10.1002/mc.22690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9. https://doi.org/10.1056/NEJMoa1113713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dummer R, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, et al. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): a phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol. 2016;75(1):113-25.e5. https://doi.org/10.1016/j.jaad.2016.02.1226.

    Article  CAS  PubMed  Google Scholar 

  55. Herms F, Lambert J, Grob JJ, Haudebourg L, Bagot M, Dalac S, et al. Follow-up of patients with complete remission of locally advanced basal cell carcinoma after vismodegib discontinuation: a multicenter french study of 116 patients. J Clin Oncol. 2019;37(34):3275–82. https://doi.org/10.1200/jco.18.00794.

    Article  CAS  PubMed  Google Scholar 

  56. • Bottomley MJ, Thomson J, Harwood C, Leigh I. The role of the immune system in cutaneous squamous cell carcinoma. Int J Mol Sci 2019;20(8). https://doi.org/10.3390/ijms20082009. This is a comprehensive review of the innate and adaptive immunity in cSCC, and from bench to clinic provides discussion about the immunosuppressed population in cSCC.

  57. •• Shalhout SZ, Kaufman HL, Emerick KS, Miller DM. Immunotherapy for nonmelanoma skin cancer: facts and hopes. Clin Cancer Res. 2022;28(11):2211–20. https://doi.org/10.1158/1078-0432.Ccr-21-2971. (This review summarizes the FDA-approved immunotherapy, highlights important ongoing trials, and illustrates current challenges as well as future perspectives in the field of immunotherapy for NMSCs).

    Article  CAS  PubMed  Google Scholar 

  58. Hua LA, Kagen CN, Carpenter RJ, Goltz RW. HLA and beta 2-microglobulin expression in basal and squamous cell carcinomas of the skin. Int J Dermatol. 1985;24(10):660–3. https://doi.org/10.1111/j.1365-4362.1985.tb05719.x.

    Article  CAS  PubMed  Google Scholar 

  59. Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R. Mechanisms underlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch Dermatol. 2003;139(10):1325–32. https://doi.org/10.1001/archderm.139.10.1325.

    Article  CAS  PubMed  Google Scholar 

  60. Clark RA, Huang SJ, Murphy GF, Mollet IG, Hijnen D, Muthukuru M, et al. Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med. 2008;205(10):2221–34. https://doi.org/10.1084/jem.20071190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Houben R, Shuda M, Weinkam R, Schrama D, Feng H, Chang Y, et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol. 2010;84(14):7064–72. https://doi.org/10.1128/jvi.02400-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shuda M, Arora R, Kwun HJ, Feng H, Sarid R, Fernández-Figueras MT, et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J cancer. 2009;125(6):1243–9. https://doi.org/10.1002/ijc.24510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iyer JG, Afanasiev OK, McClurkan C, Paulson K, Nagase K, Jing L, et al. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin Cancer Res. 2011;17(21):6671–80. https://doi.org/10.1158/1078-0432.Ccr-11-1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2016;7(3):3403–15. https://doi.org/10.18632/oncotarget.6494.

    Article  PubMed  Google Scholar 

  65. Jørgensen NG, Klausen U, Grauslund JH, Helleberg C, Aagaard TG, Do TH, et al. Peptide vaccination against PD-L1 with IO103 a novel immune modulatory vaccine in multiple myeloma: a phase I first-in-human trial. Front Immunol. 2020;11:595035. https://doi.org/10.3389/fimmu.2020.595035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jørgensen NG, Kaae J, Grauslund JH, Met Ö, Nielsen SL, Pedersen AW, et al. Vaccination against PD-L1 with IO103 a novel immune modulatory vaccine in basal cell carcinoma: a phase IIa study. Cancers. 2021;13(4). https://doi.org/10.3390/cancers13040911.

  67. Bhatia S, Miller N, Lu H, Ibrani D, Shinohara M, Byrd DR, et al. Pilot trial of intratumoral (IT) G100, a toll-like receptor-4 (TLR4) agonist, in patients (pts) with Merkel cell carcinoma (MCC): Final clinical results and immunologic effects on the tumor microenvironment (TME). J Clin Oncol. 2016;34(15_suppl):3021. https://doi.org/10.1200/JCO.2016.34.15_suppl.3021.

  68. O’Day S, Perez C, Wise-Draper T, Hanna G, Bhatia S, Kelly C, et al. 423 Safety and preliminary efficacy of intratumoral cavrotolimod (AST-008), a spherical nucleic acid TLR9 agonist, in combination with pembrolizumab in patients with advanced solid tumors. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-SITC2020.0423.

  69. Ghafouri-Fard S, Ghafouri-Fard S. Immunotherapy in nonmelanoma skin cancer. Immunotherapy. 2012;4(5):499–510. https://doi.org/10.2217/imt.12.29.

    Article  CAS  PubMed  Google Scholar 

  70. Lei J, Ploner A, Elfström KM, Wang J, Roth A, Fang F, et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med. 2020;383(14):1340–8. https://doi.org/10.1056/NEJMoa1917338.

    Article  CAS  PubMed  Google Scholar 

  71. Strickley JD, Messerschmidt JL, Awad ME, Li T, Hasegawa T, Ha DT, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;575(7783):519–22. https://doi.org/10.1038/s41586-019-1719-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nichols AJ, Gonzalez A, Clark ES, Khan WN, Rosen AC, Guzman W, et al. Combined systemic and intratumoral administration of human papillomavirus vaccine to treat multiple cutaneous basaloid squamous cell carcinomas. JAMA Dermatol. 2018;154(8):927–30. https://doi.org/10.1001/jamadermatol.2018.1748.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nichols AJ, Allen AH, Shareef S, Badiavas EV, Kirsner RS, Ioannides T. Association of human papillomavirus vaccine with the development of keratinocyte carcinomas. JAMA Dermatol. 2017;153(6):571–4. https://doi.org/10.1001/jamadermatol.2016.5703.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cañueto J, Cardeñoso E, García JL, Santos-Briz Á, Castellanos-Martín A, Fernández-López E, et al. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br J Dermatol. 2017;176(5):1279–87. https://doi.org/10.1111/bjd.14936.

    Article  CAS  PubMed  Google Scholar 

  75. Saavedra D, Crombet T. CIMAvax-EGF: a new therapeutic vaccine for advanced non-small cell lung cancer patients. Front Immunol. 2017;8:269. https://doi.org/10.3389/fimmu.2017.00269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51. https://doi.org/10.1056/NEJMoa1805131.

    Article  CAS  PubMed  Google Scholar 

  77. Grob JJ, Gonzalez R, Basset-Seguin N, Vornicova O, Schachter J, Joshi A, et al. Pembrolizumab monotherapy for recurrent or metastatic cutaneous squamous cell carcinoma: a single-arm phase II trial (KEYNOTE-629). J Clin Oncol. 2020;38(25):2916–25. https://doi.org/10.1200/jco.19.03054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin C, Ballah T, Nottage M, Hay K, Chua B, Kenny L, et al. A prospective study investigating the efficacy and toxicity of definitive ChemoRadiation and ImmunOtherapy (CRIO) in locally and/or regionally advanced unresectable cutaneous squamous cell carcinoma. Radiat Oncol (London, England). 2021;16(1):69. https://doi.org/10.1186/s13014-021-01795-5.

    Article  CAS  Google Scholar 

  79. Singh MP, Sethuraman SN, Ritchey J, Fiering S, Guha C, Malayer J, et al. In-situ vaccination using focused ultrasound heating and anti-CD-40 agonistic antibody enhances T-cell mediated local and abscopal effects in murine melanoma. Int J Hyperthermia. 2019;36(sup1):64–73. https://doi.org/10.1080/02656736.2019.1663280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hammerich L, Bhardwaj N, Kohrt HE, Brody JD. In situ vaccination for the treatment of cancer. Immunotherapy. 2016;8(3):315–30. https://doi.org/10.2217/imt.15.120.

    Article  CAS  PubMed  Google Scholar 

  81. Wang G, Kang X, Chen KS, Jehng T, Jones L, Chen J, et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. 2020;11(1):1395. https://doi.org/10.1038/s41467-020-15229-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Westbrook BC, Norwood TG, Terry NLJ, McKee SB, Conry RM. Talimogene laherparepvec induces durable response of regionally advanced Merkel cell carcinoma in 4 consecutive patients. JAAD case reports. 2019;5(9):782–6. https://doi.org/10.1016/j.jdcr.2019.06.034.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shen Y, Nemunaitis J. Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol Ther. 2005;11(2):180–95. https://doi.org/10.1016/j.ymthe.2004.10.015.

    Article  CAS  PubMed  Google Scholar 

  84. Bunch BL, Kodumudi KN, Scott E, Morse J, Weber AM, Berglund AE, et al. Anti-tumor efficacy of plasmid encoding emm55 in a murine melanoma model. Cancer Immunol. 2020;69(12):2465–76. https://doi.org/10.1007/s00262-020-02634-4.

    Article  CAS  Google Scholar 

  85. Zheng R, Ma J. Immunotherapeutic implications of toll-like receptors activation in tumor microenvironment. Pharmaceutics. 2022;14(11). https://doi.org/10.3390/pharmaceutics14112285.

  86. Rolig AS, Rose DC, McGee GH, Rubas W, Kivimäe S, Redmond WL. Combining bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) improves systemic antitumor CD8(+) T cell cytotoxicity over BEMPEG+RT. J Immunother Cancer. 2022;10(4). doi: https://doi.org/10.1136/jitc-2021-004218.

  87. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9. https://doi.org/10.1038/s41586-018-0792-9.

    Article  CAS  PubMed  Google Scholar 

  88. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136. https://doi.org/10.1038/s41467-017-01062-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang L, Malu S, McKenzie JA, Andrews MC, Talukder AH, Tieu T, et al. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin Cancer Res. 2018;24(14):3366–76. https://doi.org/10.1158/1078-0432.Ccr-17-2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends in cancer. 2018;4(2):119–37. https://doi.org/10.1016/j.trecan.2017.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tormoen GW, Crittenden MR, Gough MJ. Role of the immunosuppressive microenvironment in immunotherapy. Adv Radiat Oncol. 2018;3(4):520–6. https://doi.org/10.1016/j.adro.2018.08.018.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Robins HS, Ericson NG, Guenthoer J, O’Briant KC, Tewari M, Drescher CW, et al. Digital genomic quantification of tumor-infiltrating lymphocytes. Sci Transl Med. 2013;5(214):214ra169. https://doi.org/10.1126/scitranslmed.3007247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Danilova L, Anagnostou V, Caushi JX, Sidhom JW, Guo H, Chan HY, et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol Res. 2018;6(8):888–99. https://doi.org/10.1158/2326-6066.Cir-18-0129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget. 2014;5(2):403–16. https://doi.org/10.18632/oncotarget.1719.

    Article  PubMed  Google Scholar 

  95. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–10. https://doi.org/10.1016/j.ctrv.2015.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714. https://doi.org/10.1016/j.ccell.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  97. Huang JW, Kuo CL, Wang LT, Ma KS, Huang WY, Liu FC, et al. Case report: In Situ vaccination by autologous CD16(+) dendritic cells and anti-PD-L 1 antibody synergized with radiotherapy to boost T cells-mediated antitumor efficacy in a psoriatic patient with cutaneous squamous cell carcinoma. Front Immunol. 2021;12:752563. https://doi.org/10.3389/fimmu.2021.752563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Wen-Yen Huang, Feng-Cheng Liu, and Kuender D Yang for their conceptualization of this article. This manuscript was edited by Wallace Academic Editing.

Funding

The study was funded by the Tri-Service General Hospital Foundation (TSGH-E-112226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Heng Yang MD, PhD.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SE., Chen, YH., Hung, CT. et al. Therapeutic Cancer Vaccines for Nonmelanoma Skin Cancer. Curr. Treat. Options in Oncol. 24, 496–514 (2023). https://doi.org/10.1007/s11864-023-01074-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01074-3

Keywords

Navigation