Skip to main content

Advertisement

Log in

Radiation-Induced Cardiovascular Toxicities

  • Cardio-oncology (MG Fradley, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Several seminal papers over the last decade have furthered our recognition of radiation-induced heart disease (RIHD) as an important potential toxicity following radiation therapy (RT) to the chest. Investigators continue to evaluate the subacute and long-term effects of RT. In addition, studies are determining whether certain cardiac substructures are more sensitive to radiation, working to identify risk factors for the development of RIHD, and testing screening and mitigation strategies for RIHD. Multiple groups and expert consensus guidelines have published whole-heart and cardiac substructure dose constraints based on available data and cancer type. The authors recommend readers to familiarize themselves with the guidelines for screening and mitigating RIHD in adults and children, which advocate for cardiovascular risk assessment and reduction before and following RT, as well as cardiovascular imaging at appropriate follow-up intervals for early recognition of subclinical cardiovascular disease. Referrals to cardiology or cardio-oncology can also be helpful in prevention, screening, and mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vijayakumar S, Chen GT. Implementation of three dimensional conformal radiation therapy: prospects, opportunities, and challenges. Int J Radiat Oncol Biol Phys. 1995;33(5):979–83.

    Article  CAS  PubMed  Google Scholar 

  2. Pirzkall A, Carol M, Lohr F, Höss A, Wannenmacher M, Debus J. Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys. 2000;48(5):1371–80.

    Article  CAS  PubMed  Google Scholar 

  3. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, Bogart JA, Dobelbower MC, Bosch W, Galvin JM, Kavadi VS, Narayan S, Iyengar P, Robinson CG, Wynn RB, Raben A, Augspurger ME, MacRae RM, Paulus R, Bradley JD. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62.

    Article  PubMed  Google Scholar 

  4. Murakami YM, Kamima T, Abo N, Takahashi T, Kaneko M, Nakano M, Matsubayashi F, Harada A, Taguchi S, Hashimoto T, Oguchi M, Yoshioka Y. Dosimetric comparison between 3D conformal radiation therapy plus electron boost and simultaneous integrated boost volumetric modulated arc therapy for left-sided breast cancer patients with a potential risk of radiation-induced cardiac toxicity. International Journal of Radiation Oncology*Biology*Physics. 2021;111(3):e525–6.

    Article  Google Scholar 

  5. Maraldo MV, Specht L. A decade of comparative dose planning studies for early-stage Hodgkin lymphoma: what can we learn? Int J Radiat Oncol Biol Phys. 2014;90(5):1126–35.

    Article  PubMed  Google Scholar 

  6. Paganetti H, Kooy H. Proton radiation in the management of localized cancer. Expert Rev Med Devices. 2010;7(2):275–85.

    Article  CAS  PubMed  Google Scholar 

  7. Paganetti H, Grassberger C, Sharp GC. Physics of particle beam and hypofractionated beam delivery in NSCLC. Semin Radiat Oncol. 2021;31(2):162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kearney M, Keys M, Faivre-Finn C, Wang Z, Aznar MC, Duane F. Exposure of the heart in lung cancer radiation therapy: a systematic review of heart doses published during 2013 to 2020. Radiother Oncol. 2022;172:118–25.

    Article  PubMed  Google Scholar 

  9. Lin SH, Hobbs BP, Verma V, Tidwell RS, Smith GL, Lei X, Corsini EM, Mok I, Wei X, Yao L, Wang X, Komaki RU, Chang JY, Chun SG, Jeter MD, Swisher SG, Ajani JA, Blum-Murphy M, Vaporciyan AA, et al. Randomized phase IIB trial of proton beam therapy versus intensity-modulated radiation therapy for locally advanced esophageal cancer. J Clin Oncol. 2020;38(14):1569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maraldo MV, Brodin NP, Aznar MC, Vogelius IR, Munck af Rosenschöld P, Petersen PM, Specht L. Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma. Ann Oncol. 2013;24(8):2113–8.

    Article  CAS  PubMed  Google Scholar 

  11. Farsad M. FDG PET/CT in the staging of lung cancer. Curr Radiopharm. 2020;13(3):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Betancourt-Cuellar SL, Benveniste MFK, Palacio DP, Hofstetter WL. Esophageal cancer: tumor-node-metastasis staging. Radiol Clin North Am. 2021;59(2):219–29.

    Article  PubMed  Google Scholar 

  13. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA, Alliance, Australasian Leukaemia and Lymphoma Group, Eastern Cooperative Oncology Group, European Mantle Cell Lymphoma Consortium, Italian Lymphoma Foundation, European Organisation for Research, Treatment of Cancer/Dutch Hemato-Oncology Group, Grupo Español de Médula Ósea, German High-Grade Lymphoma Study Group, German Hodgkin's Study Group, Japanese Lymphorra Study Group, Lymphoma Study Association, NCIC Clinical Trials Group, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, Girinsky T, Hoppe RT, Mauch P, Mikhaeel NG, Ng A, ILROG. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.

    Article  PubMed  Google Scholar 

  15. Geiger GA, Kim MB, Xanthopoulos EP, Pryma DA, Grover S, Plastaras JP, Langer CJ, Simone CB II, Rengan R. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non-small-cell lung cancer. Clin Lung Cancer. 2014;15(1):79–85.

    Article  PubMed  Google Scholar 

  16. Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez-Mattei J, Mitchell JD. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 2021;3(3):343–59.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Paoletti L, Ceccarelli C, Menichelli C, Aristei C, Borghesi S, Tucci E, Bastiani P, Cozzi S. Special stereotactic radiotherapy techniques: procedures and equipment for treatment simulation and dose delivery. Rep Pract Oncol Radiother. 2022;27(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bergom C, Currey A, Desai N, Tai A, Strauss JB. Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol. 2018;8:87.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Desai N, Currey A, Kelly T, Bergom C. Nationwide trends in heart-sparing techniques utilized in radiation therapy for breast cancer. Adv Radiat Oncol. 2019;4(2):246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, Berthelsen AK, Specht L, Petersen PM. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):169–74.

    Article  PubMed  Google Scholar 

  21. Feng M, Moran JM, Koelling T, Chughtai A, Chan JL, Freedman L, Hayman JA, Jagsi R, Jolly S, Larouere J, Soriano J, Marsh R, Pierce LJ. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79(1):10–8.

    Article  PubMed  Google Scholar 

  22. Duane F, Aznar MC, Bartlett F, Cutter DJ, Darby SC, Jagsi R, Lorenzen EL, McArdle O, McGale P, Myerson S, Rahimi K, Vivekanandan S, Warren S, Taylor CW. A cardiac contouring atlas for radiotherapy. Radiother Oncol. 2017;122(3):416–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Milo MLH, Offersen BV, Bechmann T, Diederichsen ACP, Hansen CR, Holtved E, Josipovic M, Lörincz T, Maraldo MV, Nielsen MH, Nordsmark M, Nyström PW, Pøhl M, Rose HK, Schytte T, Yates ES, Lorenzen EL. Delineation of whole heart and substructures in thoracic radiation therapy: national guidelines and contouring atlas by the Danish Multidisciplinary Cancer Groups. Radiother Oncol. 2020;150:121–7.

    Article  PubMed  Google Scholar 

  24. Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, Kozono DE, Baldini EH, Chen AB, Nguyen PL, D’Amico AV, Nohria A, Hoffmann U, Aerts HJWL, Mak RH. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–87 In a cohort of over 700 patients with locally advanced non-small cell lung cancer treated with thoracic radiotherapy, mean heart dose was significantly associated with the development of future major adverse cardiac events, and all cause mortality in patients without existing coronary heart disease. This supports the need for more stringent avoidance of high cardiac dose in this patient population.

    Article  PubMed  Google Scholar 

  25. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, Jensen MB, Nisbet A, Peto R, Rahimi K, Taylor C, Hall P. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  PubMed  Google Scholar 

  26. van Nimwegen FASM, Cutter DJ, Janus CP, Krol AD, Hauptmann M, Kooijman K, Roesink J, van der Maazen R, Darby SC, Aleman BM, van Leeuwen FE. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43.

    Article  PubMed  Google Scholar 

  27. Piroth MD, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Krug D, Röser A, Sedlmayer F, Souchon R, Wenz F, Sauer R. Heart toxicity from breast cancer radiotherapy: current findings, assessment, and prevention. Strahlenther Onkol. 2019;195(1):1–12 The German Society for Radiation Oncology published dose constraints for cardiac substructures based on a literature review of the available data for patients with breast cancer. This is the most updated and comprehensive dose constraints available for cardiac substructures for this patient population.

    Article  PubMed  Google Scholar 

  28. Hoppe BS, Bates JE, Mendenhall NP, Morris CG, Louis D, Ho MW, Hoppe RT, Shaikh M, Li Z, Flampouri S. The meaningless meaning of mean heart dose in mediastinal lymphoma in the modern radiation therapy era. Pract Radiat Oncol. 2020;10(3):e147–54.

    Article  PubMed  Google Scholar 

  29. Atkins KM, Bitterman DS, Chaunzwa TL, Kozono DE, Baldini EH, Aerts HJWL, Tamarappoo BK, Hoffmann U, Nohria A, Mak RH. Mean heart dose is an inadequate surrogate for left anterior descending coronary artery dose and the risk of major adverse cardiac events in lung cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2021;110(5):1473–9.

    Article  PubMed  Google Scholar 

  30. Finnegan R, Lorenzen EL, Dowling J, Jensen I, Berg M, Thomsen MS, Delaney GP, Koh ES, Thwaites D, Brink C, Offersen BV, Holloway L. Analysis of cardiac substructure dose in a large, multi-centre danish breast cancer cohort (the DBCG HYPO trial): trends and predictive modelling. Radiother Oncol. 2020;153:130–8.

    Article  CAS  PubMed  Google Scholar 

  31. Jacob S, Camilleri J, Derreumaux S, Walker V, Lairez O, Lapeyre M, Bruguière E, Pathak A, Bernier MO, Laurier D, Ferrieres J, Gallocher O, Latorzeff I, Pinel B, Franck D, Chevelle C, Jimenez G, Broggio D. Is mean heart dose a relevant surrogate parameter of left ventricle and coronary arteries exposure during breast cancer radiotherapy: a dosimetric evaluation based on individually-determined radiation dose (BACCARAT study). Radiat Oncol. 2019;14(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taylor CW, Nisbet A, McGale P, Goldman U, Darby SC, Hall P, Gagliardi G. Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol. 2009;90(1):127–35.

    Article  PubMed  Google Scholar 

  33. Taylor CW, Brønnum D, Darby SC, Gagliardi G, Hall P, Jensen MB, McGale P, Nisbet A, Ewertz M. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001. Radiother Oncol. 2011;100(2):176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Velzen SGM, Gal R, Teske AJ, van der Leij F, van den Bongard DHJG, Viergever MA, Verkooijen HM, Išgum I. AI-based radiation dose quantification for estimation of heart disease risk in breast cancer survivors after radiation therapy. Int J Radiat Oncol Biol Phys. 2022;112(3):621–32.

    Article  PubMed  Google Scholar 

  35. van den Bogaard VAB, Spoor DS, van der Schaaf A, van Dijk LV, Schuit E, Sijtsema NM, Langendijk JA, Maduro JH, Crijns APG. The importance of radiation dose to the atherosclerotic plaque in the left anterior descending coronary artery for radiation-induced cardiac toxicity of breast cancer patients? Int J Radiat Oncol Biol Phys. 2021;110(5):1350–9.

    Article  PubMed  Google Scholar 

  36. Zureick AH, Grzywacz VP, Almahariq MF, Silverman BR, Vayntraub A, Chen PY, Gustafson GS, Jawad MS, Dilworth JT. Dose to the left anterior descending artery correlates with cardiac events after irradiation for breast cancer. Int J Radiat Oncol Biol Phys. 2022;114:130–9.

    Article  PubMed  Google Scholar 

  37. Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, Bogart JA, Forster KM, Magliocco AM, Kavadi VS, Narayan S, Iyengar P, Robinson CG, Wynn RB, Koprowski CD, Olson MR, Meng J, Paulus R, Curran WJ Jr, Choy H. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2020;38(7):706–14.

    Article  CAS  PubMed  Google Scholar 

  38. Thor M, Deasy JO, Hu C, Gore E, Bar-Ad V, Robinson C, Wheatley M, Oh JH, Bogart J, Garces YI, Kavadi VS, Narayan S, Iyengar P, Witt JS, Welsh JW, Koprowski CD, Larner JM, Xiao Y, Bradley J. Modeling the impact of cardiopulmonary irradiation on overall survival in NRG oncology trial RTOG 0617. Clin Cancer Res. 2020;26(17):4643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrugia M, Yu H, Ma SJ, et al. Right atrial dose is associated with worse outcome in patients undergoing definitive stereotactic body radiation therapy for central lung tumors. Cancers (Basel). 2022;14(6).

  40. Vivekanandan S, Landau DB, Counsell N, Warren DR, Khwanda A, Rosen SD, Parsons E, Ngai Y, Farrelly L, Hughes L, Hawkins MA, Fenwick JD. The impact of cardiac radiation dosimetry on survival after radiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;99(1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vivekanandan S, Fenwick JD, Counsell N, Panakis N, Stuart R, Higgins GS, Hawkins MA. Associations between cardiac irradiation and survival in patients with non-small cell lung cancer: validation and new discoveries in an independent dataset. Radiother Oncol. 2021;165:119–25.

    Article  PubMed  Google Scholar 

  42. Atkins KM, Chaunzwa TL, Lamba N, Bitterman DS, Rawal B, Bredfeldt J, Williams CL, Kozono DE, Baldini EH, Nohria A, Hoffmann U, Aerts HJWL, Mak RH. Association of left anterior descending coronary artery radiation dose with major adverse cardiac events and mortality in patients with non-small cell lung cancer. JAMA Oncol. 2021;7(2):206–19.

    Article  PubMed  Google Scholar 

  43. Wang X, Palaskas NL, Hobbs BP, et al. The impact of radiation dose to heart substructures on major coronary events and patient survival after chemoradiation therapy for esophageal cancer. Cancers (Basel). 2022;14(5).

  44. Niska JR, Thorpe CS, Allen SM, Daniels TB, Rule WG, Schild SE, Vargas CE, Mookadam F. Radiation and the heart: systematic review of dosimetry and cardiac endpoints. Expert Rev Cardiovasc Ther. 2018;16(12):931–50.

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell JD, Cehic DA, Morgia M, Bergom C, Toohey J, Guerrero PA, Ferencik M, Kikuchi R, Carver JR, Zaha VG, Alvarez-Cardona JA, Szmit S, Daniele AJ, Lopez-Mattei J, Zhang L, Herrmann J, Nohria A, Lenihan DJ, Dent SF. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the International Cardio-Oncology Society. JACC CardioOncol. 2021;3(3):360–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.

    Article  PubMed  Google Scholar 

  47. Fourati N, Charfeddine S, Chaffai I, Dhouib F, Farhat L, Boukhris M, Abid L, Kammoun S, Mnejja W, Daoud J. Subclinical left ventricle impairment following breast cancer radiotherapy: is there an association between segmental doses and segmental strain dysfunction? Int J Cardiol. 2021;345:130–6.

    Article  CAS  PubMed  Google Scholar 

  48. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, Amir EA, Marwick TH, Gupta D, Thavendiranathan P. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. 2019;4(10):1007–18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.

    Article  PubMed  Google Scholar 

  50. Upshaw JN, Finkelman B, Hubbard RA, Smith AM, Narayan HK, Arndt L, Domchek S, DeMichele A, Fox K, Shah P, Clark A, Bradbury A, Matro J, Adusumalli S, Carver JR, Ky B. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC Cardiovasc Imaging. 2020;13(1 Pt 2):198–210.

    Article  PubMed  Google Scholar 

  51. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, Ruddy KJ, Yan E, Redfield MM. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tuohinen SS, Skyttä T, Huhtala H, Poutanen T, Virtanen V, Kellokumpu-Lehtinen PL, Raatikainen P. 3-Year follow-up of radiation-associated changes in diastolic function by speckle tracking echocardiography. JACC CardioOncol. 2021;3(2):277–89.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Speers C, Murthy VL, Walker EM, Glide-Hurst CK, Marsh R, Tang M, Morris EL, Schipper MJ, Weinberg RL, Gits HC, Hayman J, Feng M, Balter J, Moran J, Jagsi R, Pierce LJ. Cardiac magnetic resonance imaging and blood biomarkers for evaluation of radiation-induced cardiotoxicity in patients with breast cancer: results of a phase 2 clinical trial. Int J Radiat Oncol Biol Phys. 2022;112(2):417–25.

    Article  PubMed  Google Scholar 

  54. Tahir E, Azar M, Shihada S, Seiffert K, Goy Y, Beitzen-Heineke A, Molwitz I, Muellerleile K, Stehning C, Schön G, Adam G, Petersen C, Müller V, Lund GK. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT. Eur Radiol. 2022;32(3):1853–65.

    Article  CAS  PubMed  Google Scholar 

  55. Bergom C, Rubenstein J, Wilson JF, Welsh A, Ibrahim ESH, Prior P, Schottstaedt AM, Eastwood D, Zhang MJ, Currey A, Puckett L, Strande JL, Bradley JA, White J. A pilot study of cardiac MRI in breast cancer survivors after cardiotoxic chemotherapy and three-dimensional conformal radiotherapy. Front Oncol. 2020;10:506739.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ibrahim EH, Baruah D, Croisille P, et al. Cardiac magnetic resonance for early detection of radiation therapy-induced cardiotoxicity in a small animal model. JACC CardioOncol. 2021;3(1):113–30.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Desai MY, Wu W, Masri A, Popovic ZB, Agarwal S, Smedira NG, Lytle BW, Griffin BP. Increased aorto-mitral curtain thickness independently predicts mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. Ann Thorac Surg. 2014;97(4):1348–55.

    Article  PubMed  Google Scholar 

  58. Donnellan E, Alashi A, Johnston DR, Gillinov AM, Pettersson GB, Svensson LG, Griffin BP, Desai MY. Outcomes of patients with mediastinal radiation-associated mitral valve disease undergoing cardiac surgery. Circulation. 2019;140(15):1288–90.

    Article  PubMed  Google Scholar 

  59. Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, Forman DE, di Carli MF, Nohria A. Abnormal exercise response in long-term survivors of Hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65(6):573–83.

    Article  PubMed  Google Scholar 

  60. Piovaccari G, Ferretti RM, Prati F, Traini AM, Gobbi M, Caravita L, Branzi A, Magnani B. Cardiac disease after chest irradiation for Hodgkin's disease: incidence in 108 patients with long follow-up. Int J Cardiol. 1995;49(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  61. Welch TD, Ling LH, Espinosa RE, Anavekar NS, Wiste HJ, Lahr BD, Schaff HV, Oh JK. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic criteria. Circ Cardiovasc Imaging. 2014;7(3):526–34.

    Article  PubMed  Google Scholar 

  62. Andersen R, Wethal T, Günther A, Fosså A, Edvardsen T, Fosså SD, Kjekshus J. Relation of coronary artery calcium score to premature coronary artery disease in survivors >15 years of Hodgkin's lymphoma. Am J Cardiol. 2010;105(2):149–52.

    Article  PubMed  Google Scholar 

  63. Yakupovich A, Davison MA, Kharouta MZ, Turian J, Seder CW, Batus M, Fogg LF, Kalra D, Kosinski M, Taskesen T, Okwuosa TM. Heart dose and coronary artery calcification in patients receiving thoracic irradiation for lung cancer. J Thorac Dis. 2020;12(3):223–31.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang K, Malkin HE, Patchett ND, Pearlstein KA, Heiling HM, McCabe SD, Deal AM, Mavroidis P, Oakey M, Fenoli J, Lee CB, Klein JL, Jensen BC, Stinchcombe TE, Marks LB, Weiner AA. Coronary artery calcifications and cardiac risk after radiation therapy for stage III lung cancer. Int J Radiat Oncol Biol Phys. 2022;112(1):188–96.

    Article  PubMed  Google Scholar 

  65. Gal R, van Velzen SGM, Hooning MJ, Emaus MJ, van der Leij F, Gregorowitsch ML, Blezer ELA, Gernaat SAM, Lessmann N, Sattler MGA, Leiner T, de Jong PA, Teske AJ, Verloop J, Penninkhof JJ, Vaartjes I, Meijer H, van Tol-Geerdink JJ, Pignol JP, et al. Identification of risk of cardiovascular disease by automatic quantification of coronary artery calcifications on radiotherapy planning CT scans in patients with breast cancer. JAMA Oncol. 2021;7(7):1024–32 Coronary artery calcium scores were determined on the radiation therapy planning CT for over 15,000 patients with breast cancer. They found that coronary artery calcium was associated with cardioivascular disease after radiation therapy, and automated coronary artery calcium scoring at radiotherapy planning may allow for the implementation of cardiovascular disease risk-mitigating strategies in patients with breast cancer at elevated risk.

    Article  PubMed  Google Scholar 

  66. Demissei BG, Freedman G, Feigenberg SJ, Plastaras JP, Maity A, Smith AM, McDonald C, Sheline K, Simone CB II, Lin LL, Carver JR, Liu P, Zhang L, Bekelman JE, Ky B. Early changes in cardiovascular biomarkers with contemporary thoracic radiation therapy for breast cancer, lung cancer, and lymphoma. Int J Radiat Oncol Biol Phys. 2019;103(4):851–60.

    Article  CAS  PubMed  Google Scholar 

  67. Taylor CJ, Roalfe AK, Iles R, Hobbs FD. The potential role of NT-proBNP in screening for and predicting prognosis in heart failure: a survival analysis. BMJ Open. 2014;4(4):e004675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burke AM, Yeh C, Kim S, Bergquist P, Krishnan P, Barac A, Srichai MB, Unger K. A prospective study of early radiation associated cardiac toxicity following neoadjuvant chemoradiation for distal esophageal cancer. Front Oncol. 2020;10:1169.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dreyfuss AD, Goia D, Shoniyozov K, Shewale SV, Velalopoulou A, Mazzoni S, Avgousti H, Metzler SD, Bravo PE, Feigenberg SJ, Ky B, Verginadis II, Koumenis C. A novel mouse model of radiation-induced cardiac injury reveals biological and radiological biomarkers of cardiac dysfunction with potential clinical relevance. Clin Cancer Res. 2021;27(8):2266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carlson LE, Watt GP, Tonorezos ES, Chow EJ, Yu AF, Woods M, Lynch CF, John EM, Mellemkjӕr L, Brooks JD, Knight JA, Reiner AS, Liang X, Smith SA, Bernstein L, Dauer LT, Cerviño LI, Howell RM, Shore RE, et al. Coronary artery disease in young women after radiation therapy for breast cancer: the WECARE study. JACC CardioOncol. 2021;3(3):381–92.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Puckett LL, Saba SG, Henry S, Rosen S, Rooney E, Filosa SL, Gilbo P, Pappas K, Laxer A, Eacobacci K, Kapyur AN, Robeny J, Musial S, Chaudhry A, Chaudhry R, Lesser ML, Riegel A, Ramoutarpersaud S, Rahmani N, et al. Cardiotoxicity screening of long-term, breast cancer survivors-the CAROLE (Cardiac-Related Oncologic Late Effects) Study. Cancer Med. 2021;10(15):5051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bachir B, Anouti S, Abi Jaoude J, Kayali M, Tfayli A, de Azambuja E, Poortmans P, Zeidan YH. Evaluation of cardiotoxicity in HER-2-positive breast cancer patients treated with radiation therapy and trastuzumab. Int J Radiat Oncol Biol Phys. 2022;113(1):135–42.

    Article  PubMed  Google Scholar 

  73. Kalapurakal JA, Gopalakrishnan M, Walterhouse DO, Rigsby CK, Rademaker A, Helenowski I, Kessel S, Morano K, Laurie F, Ulin K, Esiashvili N, Katzenstein H, Marcus K, Followill DS, Wolden SL, Mahajan A, Fitzgerald TJ. Cardiac-sparing whole lung IMRT in patients with pediatric tumors and lung metastasis: final report of a prospective multicenter clinical trial. Int J Radiat Oncol Biol Phys. 2019;103(1):28–37.

    Article  PubMed  Google Scholar 

  74. Gaasch A, Schönecker S, Simonetto C, Eidemüller M, Pazos M, Reitz D, Rottler M, Freislederer P, Braun M, Würstlein R, Harbeck N, Niyazi M, Belka C, Corradini S. Heart sparing radiotherapy in breast cancer: the importance of baseline cardiac risks. Radiat Oncol. 2020;15(1):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Sanctis V, Alfò M, Vitiello C, et al. Markers of cardiotoxicity in early breast cancer patients treated with a hypofractionated schedule: a prospective study. Clin Breast Cancer. 2021;21(3):e141–9.

    Article  PubMed  Google Scholar 

  76. Clasen SC, Shou H, Freedman G, Plastaras JP, Taunk NK, Kevin Teo BK, Smith AM, Demissei BG, Ky B. Early cardiac effects of contemporary radiation therapy in patients with breast cancer. Int J Radiat Oncol Biol Phys. 2021;109(5):1301–10.

    Article  PubMed  Google Scholar 

  77. Takagi H, Ota H, Umezawa R, Kimura T, Kadoya N, Higuchi S, Sun W, Nakajima Y, Saito M, Komori Y, Jingu K, Takase K. Left ventricular T1 mapping during chemotherapy-radiation therapy: serial assessment of participants with esophageal cancer. Radiology. 2018;289(2):347–54.

    Article  PubMed  Google Scholar 

  78. Beukema JC, de Groot C, Plukker JTM, Vliegenthart R, Langendijk JA, van Luijk P, van Melle JP, Prakken NHJ, Muijs CT. Late cardiac toxicity of neo-adjuvant chemoradiation in esophageal cancer survivors: a prospective cross-sectional pilot study. Radiother Oncol. 2022;167:72–7.

    Article  CAS  PubMed  Google Scholar 

  79. Desai MY, Windecker S, Lancellotti P, Bax JJ, Griffin BP, Cahlon O, Johnston DR. Prevention, Diagnosis, and management of radiation-associated cardiac disease: JACC scientific expert panel. J Am Coll Cardiol. 2019;74(7):905–27.

    Article  PubMed  Google Scholar 

  80. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  81. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, Herrmann J, Porter C, Lyon AR, Lancellotti P, Patel A, DeCara J, Mitchell J, Harrison E, Moslehi J, Witteles R, Calabro MG, Orecchia R, de Azambuja E, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–90.

    Article  CAS  PubMed  Google Scholar 

  82. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, Cosyns B, Coucke P, Dulgheru R, Edvardsen T, Gaemperli O, Galderisi M, Griffin B, Heidenreich PA, Nieman K, Plana JC, Port SC, Scherrer-Crosbie M, Schwartz RG, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14(8):721–40.

    Article  PubMed  Google Scholar 

  83. Iliescu CA, Grines CL, Herrmann J, Yang EH, Cilingiroglu M, Charitakis K, Hakeem A, Toutouzas KP, Leesar MA, Marmagkiolis K. SCAI Expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the cardiological society of india, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter Cardiovasc Interv. 2016;87(5):E202–23.

    Article  PubMed  Google Scholar 

  84. Group CsO. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. Children's Oncology Group: Monrovia, CA; 2018.

    Google Scholar 

  85. Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, Nathan PC, Tissing WJ, Shankar S, Sieswerda E, Skinner R, Steinberger J, van Dalen E, van der Pal H, Wallace WH, Levitt G, Kremer LC, International Late Effects of Childhood Cancer Guideline Harmonization Group. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Bergom MD, PhD.

Ethics declarations

Conflict of Interest

Shahed Badiyan has served as a consultant for Merck outside the submitted work. Lindsay Pucket declares that she has no conflict of interest. Gregory Vlacich declares that he has no conflict of interest. Walter Schiffer declares that he has no conflict of interest. Lauren Pedersen declares that she has no conflict of interest. Joshua Mitchell reports personal fees and a grant from Pfizer, personal fees from BridgeBio, a grant from Children’s Discovery Institute, grants from Abbott Laboratories, and a grant from Myocardial Solutions, all outside the submitted work.

Funding Source

This work is supported by NIH R01HL147884 (CB).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badiyan, S.N., Puckett, L.L., Vlacich, G. et al. Radiation-Induced Cardiovascular Toxicities. Curr. Treat. Options in Oncol. 23, 1388–1404 (2022). https://doi.org/10.1007/s11864-022-01012-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01012-9

Keywords

Navigation