Skip to main content

Advertisement

Log in

Systemic Therapy Approaches for Breast Cancer Brain and Leptomeningeal Metastases

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Brain metastasis arising from breast cancer is associated with a poor prognosis. Various systemic chemotherapy and targeted therapies which are effective against breast cancer often fail to provide benefits against brain metastasis. This is mainly due to limited penetration of the therapies across the blood-brain barrier, and divergent evolution of brain metastasis compared to the primary tumor. Thus, brain metastasis is typically treated upfront with local therapies, such as surgery and radiation, followed by systemic therapies. Systemic therapies with CNS permeability are favored in patients with brain metastasis. This paper reviews various systemic therapy options for breast cancer brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Arvold ND, Oh KS, Niemierko A, Taghian AG, Lin NU, Abi-Raad RF, et al. Brain metastases after breast-conserving therapy and systemic therapy: incidence and characteristics by biologic subtype. Breast Cancer Res Treat. 2012;136(1):153–60. https://doi.org/10.1007/s10549-012-2243-x.

    Article  PubMed  Google Scholar 

  2. Darlix A, Louvel G, Fraisse J, Jacot W, Brain E, Debled M, et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort. Br J Cancer. 2019;121(12):991–1000. https://doi.org/10.1038/s41416-019-0619-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kim YJ, Kim JS, Kim IA. Molecular subtype predicts incidence and prognosis of brain metastasis from breast cancer in SEER database. J Cancer Res Clin Oncol. 2018;144(9):1803–16. https://doi.org/10.1007/s00432-018-2697-2.

    Article  PubMed  CAS  Google Scholar 

  4. Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(6):1663–74. https://doi.org/10.1158/1078-0432.CCR-06-2854.

    Article  CAS  Google Scholar 

  5. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77. https://doi.org/10.1158/2159-8290.CD-15-0369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cosgrove N, Vareslija D, Keelan S, Elangovan A, Atkinson JM, Cocchiglia S, et al. Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun. 2022;13(1):514.

    Article  CAS  Google Scholar 

  7. Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 2022;40(5):492–516. https://doi.org/10.1200/JCO.21.02314.

    Article  PubMed  CAS  Google Scholar 

  8. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. The New England journal of medicine. 2006;355(26):2733–43. https://doi.org/10.1056/NEJMoa064320.

    Article  PubMed  CAS  Google Scholar 

  9. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(4):1452–9. https://doi.org/10.1158/1078-0432.CCR-08-1080.

    Article  CAS  Google Scholar 

  10. Bachelot T, Romieu G, Campone M, Dieras V, Cropet C, Dalenc F, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. The Lancet Oncology. 2013;14(1):64–71. This is a prospective trial showing the clinical benefit of lapatinib plus capecitabine in patients with HER2+ breast cancer with brain metastasis. https://doi.org/10.1016/S1470-2045(12)70432-1.

    Article  PubMed  CAS  Google Scholar 

  11. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65. https://doi.org/10.1158/0008-5472.CAN-03-2868.

    Article  PubMed  CAS  Google Scholar 

  12. Freedman RA, Gelman RS, Anders CK, Melisko ME, Parsons HA, Cropp AM, et al. TBCRC 022: a phase ii trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2019;37(13):1081–9. This is the first prospective trial showing intracranial activity of neratinib plus capecitabine in patients with HER2+ breast cancer with brain metastasis. https://doi.org/10.1200/JCO.18.01511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with >/= 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol. 2020;38(27):3138–49. https://doi.org/10.1200/JCO.20.00147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hurvitz SA, Saura C, Oliveira M, Trudeau ME, Moy B, Delaloge S, et al. Efficacy of neratinib plus capecitabine in the subgroup of patients with central nervous system involvement from the NALA trial. Oncologist. 2021;26(8):e1327–e38. https://doi.org/10.1002/onco.13830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pheneger T, Bouhana K, Anderson D, Garrus J, Ahrendt K, Allen S, et al. Abstract #1795: in vitro and in vivo activity of ARRY-380: a potent, small molecule inhibitor of ErbB2. Cancer Research. 2009;69(9_Supplement):1795.

    Google Scholar 

  16. Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. The New England journal of medicine. 2020;382(7):597–609. https://doi.org/10.1056/NEJMoa1914609.

    Article  PubMed  CAS  Google Scholar 

  17. Curigliano G, Mueller V, Borges V, Hamilton E, Hurvitz S, Loi S, et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis. Annals of oncology : official journal of the European Society for Medical Oncology. 2022;33(3):321–9. https://doi.org/10.1016/j.annonc.2021.12.005.

    Article  CAS  Google Scholar 

  18. Lin NU, Murthy RK, Abramson V, Anders C, Bachelot T, Bedard P, et al. Abstract PD4-04: updated results of tucatinib vs placebo added to trastuzumab and capecitabine for patients with previously treated HER2-positive metastatic breast cancer with brain metastases (HER2CLIMB). Cancer Research. 2022;82(4_Supplement):PD4-04-PD4 This analysis from the landmark HER2CLIMB trial has established the clinical benefit and intracranial activity of a tucatinib-based regimen in not only stable/treated HER2+ breast cancer brain metastasis but also progressing brain metastasis.

    Article  Google Scholar 

  19. Li X, Yang C, Wan H, Zhang G, Feng J, Zhang L, et al. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur J Pharm Sci. 2017;110:51–61. https://doi.org/10.1016/j.ejps.2017.01.021.

    Article  PubMed  CAS  Google Scholar 

  20. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet Oncology. 2021;22(3):351–60. https://doi.org/10.1016/S1470-2045(20)30702-6.

    Article  PubMed  CAS  Google Scholar 

  21. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet Oncology. 2021;22(3):351–60. https://doi.org/10.1016/S1470-2045(20)30702-6.

    Article  PubMed  CAS  Google Scholar 

  22. Yan M, Ouyang Q, Sun T, Niu L, Yang J, Li L, et al. Pyrotinib plus capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases (PERMEATE): a multicentre, single-arm, two-cohort, phase 2 trial. The Lancet Oncology. 2022;23(3):353–61. https://doi.org/10.1016/S1470-2045(21)00716-6.

    Article  PubMed  CAS  Google Scholar 

  23. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clinical Pharmacology & Therapeutics. 2010;87(5):586–92. https://doi.org/10.1038/clpt.2010.12.

    Article  CAS  Google Scholar 

  24. Dijkers E, MNL-d H, Kosterink JG, Jager PL, Brouwers AH, Perk LR, et al. Characterization of 89Zr-trastuzumab for clinical HER2 immunoPET imaging. Journal of Clinical Oncology. 2007;25(18_suppl):3508. https://doi.org/10.1200/jco.2007.25.18_suppl.3508.

    Article  Google Scholar 

  25. Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs. 2007;18(1):23–8. https://doi.org/10.1097/01.cad.0000236313.50833.ee.

    Article  PubMed  CAS  Google Scholar 

  26. Baculi RH, Suki S, Nisbett J, Leeds N, Groves M. Meningeal carcinomatosis from breast carcinoma responsive to trastuzumab. J Clin Oncol. 2001;19(13):3297–8. https://doi.org/10.1200/JCO.2001.19.13.3297.

    Article  PubMed  CAS  Google Scholar 

  27. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England journal of medicine. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Montemurro F, Delaloge S, Barrios CH, Wuerstlein R, Anton A, Brain E, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial(). Annals of oncology : official journal of the European Society for Medical Oncology. 2020;31(10):1350–8. This analysis from the KAMILLA trial demonstrated intracranial activity of T-DM1 in HER2+ breast cancer brain metastasis. https://doi.org/10.1016/j.annonc.2020.06.020.

    Article  CAS  Google Scholar 

  29. Cortes J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. The New England journal of medicine. 2022;386(12):1143–54. https://doi.org/10.1056/NEJMoa2115022.

    Article  PubMed  CAS  Google Scholar 

  30. Hurvitz S, Kim S-B, Chung W-P, Im S-A, Park YH, Hegg R, et al. Abstract GS3-01: trastuzumab deruxtecan (T-DXd; DS-8201a) vs. trastuzumab emtansine (T-DM1) in patients (pts) with HER2+ metastatic breast cancer (mBC): subgroup analyses from the randomized phase 3 study DESTINY-Breast03. Cancer Research. 2022;82(4_Supplement):GS3-01-GS3 This result from the DESTINY-Breast03 trial has shown remarkable intracranial activity of T-DXd in HER2+ breast cancer brain metastasis (stable/treated).

    Article  Google Scholar 

  31. Lin NU, Borges V, Anders C, Murthy RK, Paplomata E, Hamilton E, et al. Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial. J Clin Oncol. 2020:JCO2000775.

  32. Kabraji S, Ni J, Sammons S, Van Swearingen AE, Wang Y, Pereslete AM, et al. Abstract PD4-05: preclinical and clinical efficacy of trastuzumab deruxtecan in breast cancer brain metastases (BCBM). Cancer Research. 2022;82(4_Supplement):PD4-05-PD4.

    Article  Google Scholar 

  33. Bartsch R, Berghoff AS, Furtner J, Marhold M, Bergen ES, Roider-Schur S, et al. 165MO trastuzumab-deruxtecan (T-DXd) in HER2-positive breast cancer patients (pts) with active brain metastases: primary outcome analysis from the TUXEDO-1 trial. Annals of Oncology. 2022;33:S198. https://doi.org/10.1016/j.annonc.2022.03.184.

    Article  Google Scholar 

  34. Rosner D, Nemoto T, Lane WW. Chemotherapy induces regression of brain metastases in breast carcinoma. Cancer. 1986;58(4):832–9. https://doi.org/10.1002/1097-0142(19860815)58:4<832::AID-CNCR2820580404>3.0.CO;2-W.

    Article  PubMed  CAS  Google Scholar 

  35. Boogerd W, Dalesio O, Bais EM, Vandersande JJ. Response of brain metastases from breast-cancer to systemic chemotherapy. Cancer. 1992;69(4):972–80. https://doi.org/10.1002/1097-0142(19920215)69:4<972::AID-CNCR2820690423>3.0.CO;2-P.

    Article  PubMed  CAS  Google Scholar 

  36. Trudeau ME, Crump M, Charpentier D, Yelle L, Bordeleau L, Matthews S, et al. Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada - Clinical Trials Group (NCIC-CTG). Annals of oncology : official journal of the European Society for Medical Oncology. 2006;17(6):952–6. https://doi.org/10.1093/annonc/mdl056.

    Article  CAS  Google Scholar 

  37. Siena S, Crino L, Danova M, Del Prete S, Cascinu S, Salvagni S, et al. Dose-dense temozolomide regimen for the treatment of brain metastases from melanoma, breast cancer, or lung cancer not amenable to surgery or radiosurgery: a multicenter phase II study. Annals of oncology : official journal of the European Society for Medical Oncology. 2010;21(3):655–61. https://doi.org/10.1093/annonc/mdp343.

    Article  CAS  Google Scholar 

  38. Trudeau ME, Crump M, Charpentier D, Yelle L, Bordeleau L, Matthews S, et al. Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada - Clinical Trials Group (NCIC-CTG). Annals of Oncology. 2006;17(6):952–6. https://doi.org/10.1093/annonc/mdl056.

    Article  PubMed  CAS  Google Scholar 

  39. Melisko ME, Assefa M, Hwang J, DeLuca A, Park JW, Rugo HS. Phase II study of irinotecan and temozolomide in breast cancer patients with progressing central nervous system disease. Breast cancer research and treatment. 2019;177(2):401–8. https://doi.org/10.1007/s10549-019-05309-6.

    Article  PubMed  CAS  Google Scholar 

  40. Omuro AM, Raizer JJ, Demopoulos A, Malkin MG, Abrey LE. Vinorelbine combined with a protracted course of temozolomide for recurrent brain metastases: a phase I trial. J Neurooncol. 2006;78(3):277–80. https://doi.org/10.1007/s11060-005-9095-8.

    Article  PubMed  CAS  Google Scholar 

  41. Rivera E, Meyers C, Groves M, Valero V, Francis D, Arun B, et al. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases from breast carcinoma. Cancer. 2006;107(6):1348–54. https://doi.org/10.1002/cncr.22127.

    Article  PubMed  CAS  Google Scholar 

  42. Cao KI, Lebas N, Gerber S, Levy C, Le Scodan R, Bourgier C, et al. Phase II randomized study of whole-brain radiation therapy with or without concurrent temozolomide for brain metastases from breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology. 2015;26(1):89–94. https://doi.org/10.1093/annonc/mdu488.

    Article  CAS  Google Scholar 

  43. Cocconi G, Lottici R, Bisagni G, Bacchi M, Tonato M, Passalacqua R, et al. Combination therapy with platinum and etoposide of brain metastases from breast carcinoma. Cancer Invest. 1990;8(3-4):327–34.

    Article  CAS  Google Scholar 

  44. Franciosi V, Cocconi G, Michiara M, Di Costanzo F, Fosser V, Tonato M, et al. Front-line chemotherapy with cisplatin and etoposide for patients with brain metastases from breast carcinoma, nonsmall cell lung carcinoma, or malignant melanoma: a prospective study. Cancer. 1999;85(7):1599–605. https://doi.org/10.1002/(SICI)1097-0142(19990401)85:7<1599::AID-CNCR23>3.0.CO;2-#.

    Article  PubMed  CAS  Google Scholar 

  45. Lassman AB, Abrey LE, Shah GD, Panageas KS, Begemann M, Malkin MG, et al. Systemic high-dose intravenous methotrexate for central nervous system metastases. J Neurooncol. 2006;78(3):255–60. https://doi.org/10.1007/s11060-005-9044-6.

    Article  PubMed  CAS  Google Scholar 

  46. Wang ML, Yung WK, Royce ME, Schomer DF, Theriault RL. Capecitabine for 5-fluorouracil-resistant brain metastases from breast cancer. American journal of clinical oncology. 2001;24(4):421–4. https://doi.org/10.1097/00000421-200108000-00026.

    Article  PubMed  CAS  Google Scholar 

  47. Ekenel M, Hormigo AM, Peak S, Deangelis LM, Abrey LE. Capecitabine therapy of central nervous system metastases from breast cancer. J Neurooncol. 2007;85(2):223–7. https://doi.org/10.1007/s11060-007-9409-0.

    Article  PubMed  CAS  Google Scholar 

  48. Adamo V, Ricciardi GRR, Giuffrida D, Scandurra G, Russo A, Blasi L, et al. Eribulin mesylate use as third-line therapy in patients with metastatic breast cancer (VESPRY): a prospective, multicentre, observational study. Ther Adv Med Oncol. 2019;11:1758835919895755. https://doi.org/10.1177/1758835919895755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Goyal S, Puri T, Julka PK, Rath GK. Excellent response to letrozole in brain metastases from breast cancer. Acta Neurochir (Wien). 2008;150(6):613–4; discussion 4-5. https://doi.org/10.1007/s00701-008-1576-z.

  50. Madhup R, Kirti S, Bhatt ML, Srivastava PK, Srivastava M, Kumar S. Letrozole for brain and scalp metastases from breast cancer—a case report. Breast. 2006;15(3):440–2. https://doi.org/10.1016/j.breast.2005.07.006.

    Article  PubMed  CAS  Google Scholar 

  51. Pors H, von Eyben FE, Sorensen OS, Larsen M. Longterm remission of multiple brain metastases with tamoxifen. J Neurooncol. 1991;10(2):173–7. https://doi.org/10.1007/BF00146879.

    Article  PubMed  CAS  Google Scholar 

  52. Rusz O, Koszo R, Dobi A, Csenki M, Valicsek E, Nikolenyi A, et al. Clinical benefit of fulvestrant monotherapy in the multimodal treatment of hormone receptor and HER2 positive advanced breast cancer: a case series. Onco Targets Ther. 2018;11:5459–63.

    Article  CAS  Google Scholar 

  53. Tolaney SM, Sahebjam S, Le Rhun E, Bachelot T, Kabos P, Awada A, et al. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2020;26(20):5310–9. https://doi.org/10.1158/1078-0432.CCR-20-1764.

    Article  CAS  Google Scholar 

  54. Tolaney SM, Sahebjam S, Rhun EL, Bachelot T, Kabos P, Awada A, et al. Correction: a phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2021;27(5):1582. https://doi.org/10.1158/1078-0432.CCR-21-0193.

    Article  Google Scholar 

  55. Brastianos PK, Kim AE, Wang N, Lee EQ, Ligibel J, Cohen JV, et al. Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nat Cancer. 2021;2(5):498–502. https://doi.org/10.1038/s43018-021-00198-5.

    Article  PubMed  CAS  Google Scholar 

  56. Batalini F, Moulder SL, Winer EP, Rugo HS, Lin NU, Wulf GM. Response of brain metastases from PIK3CA-mutant breast cancer to alpelisib. JCO Precis. Oncol. 2020;4. https://doi.org/10.1200/PO.19.00403.

  57. Diossy M, Reiniger L, Sztupinszki Z, Krzystanek M, Timms KM, Neff C, et al. Breast cancer brain metastases show increased levels of genomic aberration-based homologous recombination deficiency scores relative to their corresponding primary tumors. Annals of oncology : official journal of the European Society for Medical Oncology. 2018;29(9):1948–54. https://doi.org/10.1093/annonc/mdy216.

    Article  CAS  Google Scholar 

  58. Sambade MJ, Van Swearingen AED, McClure MB, Deal AM, Santos C, Sun K, et al. Efficacy and pharmacodynamics of niraparib in BRCA-mutant and wild-type intracranial triple-negative breast cancer murine models. Neurooncol Adv. 2019;1(1):vdz005. https://doi.org/10.1093/noajnl/vdz005.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. The New England journal of medicine. 2018;379(8):753–63. https://doi.org/10.1056/NEJMoa1802905.

    Article  PubMed  CAS  Google Scholar 

  60. Litton JK, Ettl J, Hurvitz SA, Martin M, Roche H, Lee K-H, et al. Clinical outcomes in patients (pts) with a history of central nervous system (CNS) metastases receiving talazoparib (TALA) or physician’s choice of chemotherapy (PCT) in the phase 3 EMBRACA trial. Journal of Clinical Oncology. 2021;39(15_suppl):1090. https://doi.org/10.1200/JCO.2021.39.15_suppl.1090.

    Article  Google Scholar 

  61. Exman P, Mallery RM, Lin NU, Parsons HA. Response to olaparib in a patient with germline BRCA2 mutation and breast cancer leptomeningeal carcinomatosis. NPJ Breast Cancer. 2019;5:46.

    Article  Google Scholar 

  62. Pascual T, Gonzalez-Farre B, Teixido C, Oleaga L, Oses G, Ganau S, et al. Significant clinical activity of olaparib in a somatic BRCA1-mutated triple-negative breast cancer with brain metastasis. Jco Precision. Oncology. 2019;3.

  63. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. The New England journal of medicine. 2021;384(16):1529–41. https://doi.org/10.1056/NEJMoa2028485.

    Article  PubMed  CAS  Google Scholar 

  64. Diéras V, Weaver R, Tolaney SM, Bardia A, Punie K, Brufsky A, et al. Abstract PD13-07: subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Cancer Research. 2021;81(4 Supplement):PD13-07-PD13-07.

    Google Scholar 

  65. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9.

    Article  PubMed  Google Scholar 

  66. Cortés J, Cescon DW, Rugo HS, Im SA, Md Yusof M, Gallardo C, et al. LBA16 KEYNOTE-355: final results from a randomized, double-blind phase III study of first-line pembrolizumab + chemotherapy vs placebo + chemotherapy for metastatic TNBC. Annals of Oncology. 2021;32:S1289–S90. https://doi.org/10.1016/j.annonc.2021.08.2089.

    Article  Google Scholar 

  67. Sachdev JC, Munster P, Northfelt DW, Han HS, Ma C, Maxwell F, et al. Phase I study of liposomal irinotecan in patients with metastatic breast cancer: findings from the expansion phase. Breast cancer research and treatment. 2021;185(3):759–71. https://doi.org/10.1007/s10549-020-05995-7.

    Article  PubMed  CAS  Google Scholar 

  68. Gauthier H, Guilhaume MN, Bidard FC, Pierga JY, Girre V, Cottu PH, et al. Survival of breast cancer patients with meningeal carcinomatosis. Annals of oncology : official journal of the European Society for Medical Oncology. 2010;21(11):2183–7. https://doi.org/10.1093/annonc/mdq232.

    Article  CAS  Google Scholar 

  69. Rudnicka H, Niwinska A, Murawska M. Breast cancer leptomeningeal metastasis—the role of multimodality treatment. J Neurooncol. 2007;84(1):57–62. https://doi.org/10.1007/s11060-007-9340-4.

    Article  PubMed  Google Scholar 

  70. Heo MH, Cho YJ, Kim HK, Kim JY, Park YH. Isolated pachymeningeal metastasis from breast cancer: clinical features and prognostic factors. Breast. 2017;35:109–14. https://doi.org/10.1016/j.breast.2017.07.006.

    Article  PubMed  Google Scholar 

  71. Meattini I, Livi L, Saieva C, Franceschini D, Marrazzo L, Greto D, et al. Prognostic factors and clinical features in patients with leptominengeal metastases from breast cancer: a single center experience. J Chemother. 2012;24(5):279–84.

    Article  Google Scholar 

  72. de Azevedo CR, Cruz MR, Chinen LT, Peres SV, Peterlevitz MA, de Azevedo Pereira AE, et al. Meningeal carcinomatosis in breast cancer: prognostic factors and outcome. J Neurooncol. 2011;104(2):565–72. https://doi.org/10.1007/s11060-010-0524-y.

    Article  PubMed  Google Scholar 

  73. Jo JC, Kang MJ, Kim JE, Ahn JH, Jung KH, Gong G, et al. Clinical features and outcome of leptomeningeal metastasis in patients with breast cancer: a single center experience. Cancer Chemother Pharmacol. 2013;72(1):201–7. https://doi.org/10.1007/s00280-013-2185-y.

    Article  PubMed  CAS  Google Scholar 

  74. Niwinska A, Pogoda K, Michalski W, Kunkiel M, Jagiello-Gruszfeld A. Determinants of prolonged survival for breast cancer patient groups with leptomeningeal metastasis (LM). J Neurooncol. 2018;138(1):191–8. https://doi.org/10.1007/s11060-018-2790-z.

    Article  PubMed  Google Scholar 

  75. Morikawa A, Jordan L, Rozner R, Patil S, Boire A, Pentsova E, et al. Characteristics and outcomes of patients with breast cancer with leptomeningeal metastasis. Clinical breast cancer. 2017;17(1):23–8. https://doi.org/10.1016/j.clbc.2016.07.002.

    Article  PubMed  Google Scholar 

  76. Chi Y, Shang M, Xu L, Gong H, Tao R, Song L, et al. Durable effect of pyrotinib and metronomic vinorelbine in HER2-positive breast cancer with leptomeningeal disease: a case report and literature review. Front Oncol. 2022;12:811919. https://doi.org/10.3389/fonc.2022.811919.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yan F, Rinn KJ, Kullnat JA, Wu AY, Ennett MD, Scott EL, et al. Response of leptomeningeal metastasis of breast cancer with a HER2/neu activating variant to tucatinib: a case report. J Natl Compr Canc Netw. 2022:1–8.

  78. Ricciardi GRR, Russo A, Franchina T, Schifano S, Mastroeni G, Santacaterina A, et al. Efficacy of T-DM1 for leptomeningeal and brain metastases in a HER2 positive metastatic breast cancer patient: new directions for systemic therapy - a case report and literature review. BMC Cancer. 2018;18(1):97.

    Article  CAS  Google Scholar 

  79. Alder L, Trapani D, Van Swearingen A, Khasraw M, Anders C, Lin N, et al. Abstract 5257: durable clinical and radiographic responses in a series of patients with HER2+ breast cancer (BC) leptomeningeal disease (LMD) treated with trastuzumab deruxtecan (T-DXd). Cancer Research. 2022;82(12_Supplement):5257. https://doi.org/10.1158/1538-7445.AM2022-5257.

    Article  Google Scholar 

  80. Stringer-Reasor EM, O'Brien BJ, Topletz-Erickson A, White JB, Lobbous M, Riley K, et al. Pharmacokinetic (PK) analyses in CSF and plasma from TBCRC049, an ongoing trial to assess the safety and efficacy of the combination of tucatinib, trastuzumab and capecitabine for the treatment of leptomeningeal metastasis (LM) in HER2 positive breast cancer. Journal of Clinical Oncology. 2021;39(15_suppl):1044.

    Article  Google Scholar 

  81. Murthy RK, O'Brien B, Berry DA, Singareeka-Raghavendra A, Monroe MG, Johnson J, et al. Abstract PD4-02: safety and efficacy of a tucatinib-trastuzumab-capecitabine regimen for treatment of leptomeningeal metastasis (LM) in HER2-positive breast cancer: results from TBCRC049, a phase 2 non-randomized study. Cancer Research. 2022;82(4_Supplement):PD4-02-PD4 A novel prospective study demonstrating meaningful activity of tucatinib based regimen against HER2+ breast cancer leptomeningeal disease.

    Article  Google Scholar 

  82. Kumthekar P, Tang SC, Brenner AJ, Kesari S, Piccioni DE, Anders C, et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clinical cancer research : an official journal of the American Association for Cancer Research. 2020;26(12):2789–99. https://doi.org/10.1158/1078-0432.CCR-19-3258.

    Article  CAS  Google Scholar 

  83. Brastianos PK, Lee EQ, Cohen JV, Tolaney SM, Lin NU, Wang N, et al. Publisher correction: single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat Med. 2020;26(8):1309. https://doi.org/10.1038/s41591-020-0978-1.

    Article  PubMed  CAS  Google Scholar 

  84. Brastianos PK, Lee EQ, Cohen JV, Tolaney SM, Lin NU, Wang N, et al. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat Med. 2020;26(8):1280–4. https://doi.org/10.1038/s41591-020-0918-0.

    Article  PubMed  CAS  Google Scholar 

  85. Tham YL, Hinckley L, Teh BS, Elledge R. Long-term clinical response in leptomeningeal metastases from breast cancer treated with capecitabine monotherapy: a case report. Clinical breast cancer. 2006;7(2):164–6. https://doi.org/10.3816/CBC.2006.n.028.

    Article  PubMed  Google Scholar 

  86. Shigekawa T, Takeuchi H, Misumi M, Matsuura K, Sano H, Fujiuchi N, et al. Successful treatment of leptomeningeal metastases from breast cancer using the combination of trastuzumab and capecitabine: a case report. Breast Cancer. 2009;16(1):88–92. https://doi.org/10.1007/s12282-008-0056-x.

    Article  PubMed  Google Scholar 

  87. Rogers LR, Remer SE, Tejwani S. Durable response of breast cancer leptomeningeal metastasis to capecitabine monotherapy. Neuro Oncol. 2004;6(1):63–4. https://doi.org/10.1215/S1152851703000334.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Giglio P, Tremont-Lukats IW, Groves MD. Response of neoplastic meningitis from solid tumors to oral capecitabine. J Neurooncol. 2003;65(2):167–72. https://doi.org/10.1023/B:NEON.0000003752.89814.ca.

    Article  PubMed  Google Scholar 

  89. Santa-Maria CA, Cimino-Mathews A, Moseley KF, Wolff AC, Blakeley JO, Connolly RM. Complete radiologic response and long-term survival with use of systemic high-dose methotrexate for breast cancer-associated leptomeningeal disease. Clinical breast cancer. 2012;12(6):445–9. https://doi.org/10.1016/j.clbc.2012.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kapke JT, Schneidewend RJ, Jawa ZA, Huang CC, Connelly JM, Chitambar CR. High-dose intravenous methotrexate in the management of breast cancer with leptomeningeal disease: case series and review of the literature. Hematol Oncol Stem Cell Ther. 2019;12(4):189–93. https://doi.org/10.1016/j.hemonc.2019.08.008.

    Article  PubMed  CAS  Google Scholar 

  91. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol. 1993;11(3):561–9. https://doi.org/10.1200/JCO.1993.11.3.561.

    Article  PubMed  CAS  Google Scholar 

  92. Byrnes DM, Vargas F, Dermarkarian C, Kahn R, Kwon D, Hurley J, et al. Complications of intrathecal chemotherapy in adults: single-institution experience in 109 consecutive patients. J Oncol. 2019;2019:4047617. https://doi.org/10.1155/2019/4047617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sinicrope KD, Barata P, Walker J, Tremont-Lukats IW, Groves M, Loghin M, et al. LPTO-09. Intrathecal topotecan for leptomeningeal metastasis in solid tumors: the MD Anderson experience. Neuro-oncology. Advances. 2019;1(Suppl 1):i8–i.

    Google Scholar 

  94. Kumthekar P, Lassman AB, Lin N, Grimm S, Gradishar W, Pentsova E, et al. LPTO-02. Intrathecal (IT) trastuzumab (T) for the treatment of leptomeningeal disease (LM) in patients (pts) with human epidermal receptor-2 positive (HER2+) cancer: a multicenter phase 1/2 study. Neurooncol Adv. 2019;1(Supplement_1):i6–i.

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carey K. Anders MD.

Ethics declarations

Conflict of Interest

Ajay Dhakal has received institutional funding from Celcuity Inc. and Puma biotechnology for research. Ajay Dhakal has received consulting fees from Gilead and MJH life sciences. Amanda E. D. Van Swearingen has nothing to disclose. Ruth O'Regan reports grants and personal fees from Novartis, personal fees from Pfizer, personal fees from Genomic Health, personal fees from Biotheranostics, personal fees from Lilly, personal fees from PUMA, personal fees from Genentech, personal fees from Immunomedics, and personal fees from Macrogenics, outside the submitted work. Carey K. Anders reports research funding from PUMA, Lilly, Merck, Seattle Genetics, Nektar, Tesaro, G1-Therapeutics, ZION, Novartis, and Pfizer. Carey K. Anders has received consulting fees from Genentech, Eisai, IPSEN, Seattle Genetics; Astra Zeneca, Novartis, Immunomedics, Elucida, and Athenex. Carey K. Anders has received royalties from UpToDate and Jones and Bartlett outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakal, A., Van Swearingen, A.E.D., O’Regan, R. et al. Systemic Therapy Approaches for Breast Cancer Brain and Leptomeningeal Metastases. Curr. Treat. Options in Oncol. 23, 1457–1476 (2022). https://doi.org/10.1007/s11864-022-01011-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01011-w

Keywords

Navigation