Skip to main content

Advertisement

Log in

Regorafenib for the Treatment of Sarcoma

  • Sarcoma (SH Okuno, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Sarcomas are a rare group of tumors with many subtypes, conventionally classified into soft-tissue sarcomas and bone sarcomas. Chemotherapeutic regimens form the mainstay of systemic therapy but are not well defined beyond the first-line setting and clinical outcomes are variable. Tyrosine kinase inhibitors (TKIs), with a broad inhibition profile which have been shown to target tumor angiogenesis, have an established role in the treatment of sarcomas without characteristic driver alterations. One such TKI, regorafenib, has been evaluated in sarcomas and clinical data are discussed in this review. An overview of regorafenib data from five phase 2 and one phase 1b clinical trials in over 10 sarcoma subtypes (both soft-tissue and bone) in adult and pediatric patients is reviewed. Regorafenib demonstrated clinical benefit in patients with non-adipocytic soft-tissue sarcomas, osteosarcoma and Ewing sarcoma who had progressed on prior therapy. Patients with otherwise limited treatment options may therefore benefit from regorafenib therapy.

Plain language summary

Sarcomas are a type of cancer that start from the bones or soft tissues (such as muscle, blood vessel, or fat tissue) anywhere in the body. Sarcomas are rare – only about 1% of all cancers are sarcomas, and there are many different types. Sarcomas occur more often in children than in adults. People with sarcomas which cannot be removed by surgery are usually treated with chemotherapy first, but chemotherapy may only help some people and can cause a lot of side effects. Only a few chemotherapies work in sarcomas, and if they do not work or stop working the patient does not have many other treatment options. A different type of therapy known as "tyrosine kinase inhibitors" may work in these patients. These medicines, usually swallowed as a pill, target the way that sarcoma cells grow and may help patients in whom chemotherapy has not worked. Medical doctors and scientists tested "regorafenib", a type of tyrosine kinase inhibitor, in clinical trials. This publication summarizes the results from six clinical trials that tested regorafenib in over 500 adults, teenagers, and children with sarcomas. People included in these trials had more than ten different types of sarcomas in total, and usually had already received a treatment that had not stopped the sarcoma from growing. Regorafenib treatment helped people with certain types of sarcomas that developed from bones or soft tissues, but not fat tissue. Doctors also managed the side effects of regorafenib well for patients in these trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hui JYC. Epidemiology and etiology of sarcomas. Surg Clin N Am. 2016;96(5):901–14.

    Article  PubMed  Google Scholar 

  2. Stiller CA, Trama A, Serraino D, Rossi S, Navarro C, Chirlaque MD, Casali PG, RARECARE Working Group. Descriptive epidemiology of sarcomas in Europe: Report from the RARECARE project. Eur J Cancer. 2013;49(3):684–95.

    Article  PubMed  CAS  Google Scholar 

  3. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  5. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36(4):277–85.

    Article  PubMed  Google Scholar 

  6. WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours. WHO classification of tumours, 5th edition, volume 3, vol. 3. 5th ed. Lyon: IARC; 2020.

    Google Scholar 

  7. Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, di Pompo G, Distel M, Dorado-Garcia H, Garcia-Castro J, González-González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal-Esquivel C, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12(11):e11131.

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Pinieux G, Karanian M, le Loarer F, le Guellec S, Chabaud S, Terrier P, Bouvier C, Batistella M, Neuville A, Robin YM, Emile JF, Moreau A, Larousserie F, Leroux A, Stock N, Lae M, Collin F, Weinbreck N, Aubert S, et al. Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over four years using an expert pathology review network. PLoS One. 2021;16(2):e0246958.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burns J, Wilding CP, L Jones R, H Huang P. Proteomic research in sarcomas - current status and future opportunities. Semin Cancer Biol. 2020;61:56–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, Fan T, Khanna C, Sweet-Cordero EA, Cash T, Bishop MW, Hegde M, Sertil AR, Koelsche C, Mirabello L, Malkin D, Sorensen PH, Meltzer PS, Janeway KA, et al. Provocative questions in osteosarcoma basic and translational biology: a report from the Children's Oncology Group. Cancer. 2019;125(20):3514–25.

    Article  PubMed  Google Scholar 

  11. Nakano K, Takahashi S. Precision medicine in soft tissue sarcoma treatment. Cancers. 2020;12(1):221.

    Article  PubMed Central  CAS  Google Scholar 

  12. Judson I, Verweij J, Gelderblom H, Hartmann JT, Schöffski P, Blay JY, Kerst JM, Sufliarsky J, Whelan J, Hohenberger P, Krarup-Hansen A, Alcindor T, Marreaud S, Litière S, Hermans C, Fisher C, Hogendoorn PC, dei Tos A, van der Graaf W, European Organisation and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.

    Article  PubMed  CAS  Google Scholar 

  13. Blay J-Y, Leahy MG, Nguyen BB, Patel SR, Hohenberger P, Santoro A, Staddon AP, Penel N, Piperno-Neumann S, Hendifar A, Lardelli P, Nieto A, Alfaro V, Chawla SP. Randomised phase III trial of trabectedin versus doxorubicin-based chemotherapy as first-line therapy in translocation-related sarcomas. Eur J Cancer. 2014;50(6):1137–47.

    Article  PubMed  CAS  Google Scholar 

  14. Gennatas S, Chamberlain F, Carter T, Slater S, Cojocaru E, Lambourn B, Stansfeld A, Todd R, Verrill M, Ali N, Jones RL, Simmonds P, Keay N, McCarty H, Strauss S, Karavasilis V, Dileo P, Benson C. Real-world experience with doxorubicin and olaratumab in soft tissue sarcomas in England and Northern Ireland. Clin Sarcoma Res. 2020;10:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chawla SP, Papai Z, Mukhametshina G, Sankhala K, Vasylyev L, Fedenko A, Khamly K, Ganjoo K, Nagarkar R, Wieland S, Levitt DJ. First-line aldoxorubicin vs doxorubicin in metastatic or locally advanced unresectable soft-tissue sarcoma: a phase 2b randomized clinical trial. JAMA Oncol. 2015;1(9):1272–80.

    Article  PubMed  Google Scholar 

  16. Tap WD, Papai Z, van Tine BA, Attia S, Ganjoo KN, Jones RL, Schuetze S, Reed D, Chawla SP, Riedel RF, Krarup-Hansen A, Toulmonde M, Ray-Coquard I, Hohenberger P, Grignani G, Cranmer LD, Okuno S, Agulnik M, Read W, et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017;18(8):1089–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ryan CW, Merimsky O, Agulnik M, Blay JY, Schuetze SM, van Tine BA, Jones RL, Elias AD, Choy E, Alcindor T, Keedy VL, Reed DR, Taub RN, Italiano A, Garcia del Muro X, Judson IR, Buck JY, Lebel F, Lewis JJ, et al. PICASSO III: a phase III, placebo-controlled study of doxorubicin with or without palifosfamide in patients with metastatic soft tissue sarcoma. J Clin Oncol. 2016;34(32):3898–905.

    Article  PubMed  CAS  Google Scholar 

  18. Vlenterie M, Litière S, Rizzo E, Marréaud S, Judson I, Gelderblom H, le Cesne A, Wardelmann E, Messiou C, Gronchi A, van der Graaf WTA. Outcome of chemotherapy in advanced synovial sarcoma patients: review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group; setting a new landmark for studies in this entity. Eur J Cancer. 2016;58:62–72.

    Article  PubMed  Google Scholar 

  19. Seddon B, Strauss SJ, Whelan J, Leahy M, Woll PJ, Cowie F, Rothermundt C, Wood Z, Benson C, Ali N, Marples M, Veal GJ, Jamieson D, Küver K, Tirabosco R, Forsyth S, Nash S, Dehbi HM, Beare S. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial. Lancet Oncol. 2017;18(10):1397–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tap WD, Wagner AJ, Schöffski P, Martin-Broto J, Krarup-Hansen A, Ganjoo KN, Yen CC, Abdul Razak AR, Spira A, Kawai A, le Cesne A, van Tine BA, Naito Y, Park SH, Fedenko A, Pápai Z, Soldatenkova V, Shahir A, Mo G, et al. effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: the ANNOUNCE randomized clinical trial. JAMA. 2020;323(13):1266–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. National Comprehensive Cancer Network, Clinical Practice Guidelines in Oncology (NCCN Guidelines): Bone cancer, version 2.2019.

  22. Casali PG, et al. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv79–95.

    Article  PubMed  CAS  Google Scholar 

  23. Horbach L, Sinigaglia M, da Silva CA, Olguins DB, Gregianin LJ, Brunetto AL, Brunetto AT, Roesler R, de Farias CB. Gene expression changes associated with chemotherapy resistance in Ewing sarcoma cells. Mol Clin Oncol. 2018;8(6):719–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. van Oosterwijk JG, Herpers B, Meijer D, Briaire-de Bruijn IH, Cleton-Jansen AM, Gelderblom H, van de Water B, Bovée JVMG. Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma <em>in vitro</em>: BCL-2 family members cause chemoresistance. Ann Oncol. 2012;23(6):1617–26.

    Article  PubMed  Google Scholar 

  25. Jimenez RE, Zalupski MM, Frank JJ, du W, Ryan JR, Lucas DR. Multidrug resistance phenotype in high grade soft tissue sarcoma. Cancer. 1999;86(6):976–81.

    Article  PubMed  CAS  Google Scholar 

  26. Li X, Shen JK, Hornicek FJ, Xiao T, Duan Z. Noncoding RNA in drug resistant sarcoma. Oncotarget. 2017;8(40):69086–104.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Casali PG, et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv68–78.

    Article  PubMed  CAS  Google Scholar 

  28. Judson I, Bulusu R, Seddon B, Dangoor A, Wong N, Mudan S. UK clinical practice guidelines for the management of gastrointestinal stromal tumours (GIST). Clin Sarcoma Res. 2017;7(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Casali PG, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv268–9.

    Article  PubMed  CAS  Google Scholar 

  30. van der Graaf WT, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.

    Article  PubMed  Google Scholar 

  31. STIVARGA (regorafenib) Prescribing Information. Bayer HealthCare Pharmaceuticals, Whippany, NJ, USA. 2020.

  32. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.

    Article  PubMed  CAS  Google Scholar 

  33. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CDM, Fletcher JA. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.

    Article  PubMed  CAS  Google Scholar 

  34. Demetri GD, von Mehren M, Blanke CD, van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly CM, Gutierrez Sainz L, Chi P. The management of metastatic GIST: current standard and investigational therapeutics. J Hematol Oncol. 2021;14(1):2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, Bello CL, Huang X, Baum CM, Casali PG. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    Article  PubMed  CAS  Google Scholar 

  37. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, von Mehren M, Joensuu H, Badalamenti G, Blackstein M, le Cesne A, Schöffski P, Maki RG, Bauer S, Nguyen BB, Xu J, Nishida T, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302.

    Article  PubMed  CAS  Google Scholar 

  38. Blay JY, Serrano C, Heinrich MC, Zalcberg J, Bauer S, Gelderblom H, Schöffski P, Jones RL, Attia S, D'Amato G, Chi P, Reichardt P, Meade J, Shi K, Ruiz-Soto R, George S, von Mehren M. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(7):923–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Heinrich MC, Jones RL, von Mehren M, Schöffski P, Serrano C, Kang YK, Cassier PA, Mir O, Eskens F, Tap WD, Rutkowski P, Chawla SP, Trent J, Tugnait M, Evans EK, Lauz T, Zhou T, Roche M, Wolf BB, et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol. 2020;21(7):935–46.

    Article  PubMed  CAS  Google Scholar 

  40. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–78.

    Article  PubMed  CAS  Google Scholar 

  41. Judson I, Bulusu R, Seddon B, Dangoor A, Wong N, Mudan S. UK clinical practice guidelines for the management of gastrointestinal stromal tumours (GIST). Clin Sarcoma Res. 2017;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver R, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.

    Article  PubMed  CAS  Google Scholar 

  43. Nishio J, Iwasaki H, Ishiguro M, Ohjimi Y, Yo S, Isayama T, Naito M, Kikuchi M. Supernumerary ring chromosome in a Bednar tumor (pigmented dermatofibrosarcoma protuberans) is composed of interspersed sequences from chromosomes 17 and 22: a fluorescence in situ hybridization and comparative genomic hybridization analysis. Genes Chromosom Cancer. 2001;30(3):305–9.

    Article  PubMed  CAS  Google Scholar 

  44. Salgado R, Llombart B, M. Pujol R, Fernández-Serra A, Sanmartín O, Toll A, Rubio L, Segura S, Barranco C, Serra-Guillén C, Yébenes M, Salido M, Traves V, Monteagudo C, Sáez E, Hernández T, de Álava E, Llombart-Bosch A, Solé F, et al. Molecular diagnosis of dermatofibrosarcoma protuberans: a comparison between reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization methodologies. Genes Chromosom Cancer. 2011;50(7):510–7.

    Article  PubMed  CAS  Google Scholar 

  45. Navarrete-Dechent C, Mori S, Barker CA, Dickson MA, Nehal KS. Imatinib treatment for locally advanced or metastatic dermatofibrosarcoma protuberans: a systematic review. JAMA Dermatol. 2019;155(3):361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. McArthur GA, Demetri GD, van Oosterom A, Heinrich MC, Debiec-Rychter M, Corless CL, Nikolova Z, Dimitrijevic S, Fletcher JA. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: imatinib target exploration consortium study B2225. J Clin Oncol. 2005;23(4):866–73.

    Article  PubMed  CAS  Google Scholar 

  47. Ugurel S, et al. Imatinib in locally advanced dermatofibrosarcoma protuberans (DFSP): a phase II trial of the Dermatologic Cooperative Oncology Group (DeCOG). J Clin Oncol. 2006;24(18_suppl):9561.

    Article  Google Scholar 

  48. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  49. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B, Chawla SP, Bazhenova L, Krauss JC, Chae YK, Barve M, Garrido-Laguna I, Liu SV, Conkling P, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271–82.

    Article  PubMed  CAS  Google Scholar 

  50. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, el-Deiry WS, Baik C, Deeken J, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Demetri GD, Antonescu CR, Bjerkehagen B, Bovée JVMG, Boye K, Chacón M, Dei Tos AP, Desai J, Fletcher JA, Gelderblom H, George S, Gronchi A, Haas RL, Hindi N, Hohenberger P, Joensuu H, Jones RL, Judson I, Kang YK, et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol. 2020;31(11):1506–17.

    Article  PubMed  CAS  Google Scholar 

  52. Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CDM, Fletcher JA. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157(2):377–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schöffski P, Kubickova M, Wozniak A, Blay JY, Strauss SJ, Stacchiotti S, Switaj T, Bücklein V, Leahy MG, Italiano A, Isambert N, Debiec-Rychter M, Sciot R, Lee CJ, Speetjens FM, Nzokirantevye A, Neven A, Kasper B. Long-term efficacy update of crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumour from EORTC trial 90101 CREATE. Eur J Cancer. 2021;156:12–23.

    Article  PubMed  Google Scholar 

  54. Theilen TM, Soerensen J, Bochennek K, Becker M, Schwabe D, Rolle U, Klingebiel T, Lehrnbecher T. Crizotinib in ALK(+) inflammatory myofibroblastic tumors-Current experience and future perspectives. Pediatr Blood Cancer. 2018;65(4).

  55. Kunze K, Spieker T, Gamerdinger U, Nau K, Berger J, Dreyer T, Sindermann JR, Hoffmeier A, Gattenlöhner S, Bräuninger A. A recurrent activating PLCG1 mutation in cardiac angiosarcomas increases apoptosis resistance and invasiveness of endothelial cells. Cancer Res. 2014;74(21):6173–83.

    Article  PubMed  CAS  Google Scholar 

  56. Ravi V, Sanford EM, Wang WL, Ross JS, Ramesh N, Futreal A, Patel S, Stephens PJ, Miller VA, Ali SM. Antitumor response of VEGFR2- and VEGFR3-amplified angiosarcoma to pazopanib. J Natl Compr Cancer Netw. 2016;14(5):499–502.

    Article  CAS  Google Scholar 

  57. Yang L, Liu L, Han B, Han W, Zhao M. Apatinib treatment for KIT- and KDR-amplified angiosarcoma: a case report. BMC Cancer. 2018;18(1):618.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tian Z, Niu X, Yao W. Receptor tyrosine kinases in osteosarcoma treatment: which is the key target? Front Oncol. 2020;10:1642.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, Hopper TM, Miller CG, Harrington LE, Onori JA, Mullin RJ, Gilmer TM, Truesdale AT, Epperly AH, Boloor A, Stafford JA, Luttrell DK, Cheung M. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.

    Article  PubMed  CAS  Google Scholar 

  60. DuBois S, Demetri G. Markers of angiogenesis and clinical features in patients with sarcoma. Cancer. 2007;109(5):813–9.

    Article  PubMed  CAS  Google Scholar 

  61. Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging targeted and immune-based therapies in sarcoma. J Clin Oncol. 2018;36(2):125–35.

    Article  PubMed  CAS  Google Scholar 

  62. Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M, Higashino F, Mezawa F, Okada F, Ishii S. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res. 2000;6(2):572–7.

    PubMed  CAS  Google Scholar 

  63. Yudoh K, Kanamori M, Ohmori K, Yasuda T, Aoki M, Kimura T. Concentration of vascular endothelial growth factor in the tumour tissue as a prognostic factor of soft tissue sarcomas. Br J Cancer. 2001;84(12):1610–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bajpai J, Sharma M, Sreenivas V, Kumar R, Gamnagatti S, Khan SA, Rastogi S, Malhotra A, Bakhshi S. VEGF expression as a prognostic marker in osteosarcoma. Pediatr Blood Cancer. 2009;53(6):1035–9.

    Article  PubMed  Google Scholar 

  65. Kilvaer TK, Valkov A, Sorbye SW, Smeland E, Bremnes RM, Busund LT, Donnem T. Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients. J Transl Med. 2011;9:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yu X-W, Wu TY, Yi X, Ren WP, Zhou ZB, Sun YQ, Zhang CQ. Prognostic significance of VEGF expression in osteosarcoma: a meta-analysis. Tumor Biol. 2014;35(1):155–60.

    Article  CAS  Google Scholar 

  67. Kampmann E, Altendorf-Hofmann A, Gibis S, Lindner LH, Issels R, Kirchner T, Knösel T. VEGFR2 predicts decreased patients survival in soft tissue sarcomas. Pathol Res Pract. 2015;211(10):726–30.

    Article  PubMed  CAS  Google Scholar 

  68. Lee CH, Espinosa I, Vrijaldenhoven S, Subramanian S, Montgomery KD, Zhu S, Marinelli RJ, Peterse JL, Poulin N, Nielsen TO, West RB, Gilks CB, van de Rijn M. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res. 2008;14(5):1423–30.

    Article  PubMed  CAS  Google Scholar 

  69. Fujiwara T, Fukushi JI, Yamamoto S, Matsumoto Y, Setsu N, Oda Y, Yamada H, Okada S, Watari K, Ono M, Kuwano M, Kamura S, Iida K, Okada Y, Koga M, Iwamoto Y. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol. 2011;179(3):1157–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ganjoo KN, Witten D, Patel M, Espinosa I, la T, Tibshirani R, van de Rijn M, Jacobs C, West RB. The prognostic value of tumor-associated macrophages in leiomyosarcoma: a single institution study. Am J Clin Oncol. 2011;34(1):82–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brahmi M, Lesluyes T, Dufresne A, Toulmonde M, Italiano A, Mir O, le Cesne A, Valentin T, Chevreau C, Bonvalot S, Penel N, Coindre JM, le Guellec S, le Loarer F, Karanian M, Blay JY, Chibon F. Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open. 2021;6(1):100037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Disel U, Madison R, Abhishek K, Chung JH, Trabucco SE, Matos AO, Frampton GM, Albacker LA, Reddy V, Karadurmus N, Benson A, Webster J, Paydas S, Cabanillas R, Nangia C, Ozturk MA, Millis SZ, Pal SK, Wilky B, et al. The pan-cancer landscape of coamplification of the tyrosine kinases KIT, KDR, and PDGFRA. Oncologist. 2020;25(1):e39–47.

    Article  PubMed  CAS  Google Scholar 

  73. Toulmonde M, Lucchesi C, Verbeke S, Crombe A, Adam J, Geneste D, Chaire V, Laroche-Clary A, Perret R, Bertucci F, Bertolo F, Bianchini L, Dadone-Montaudie B, Hembrough T, Sweet S, Kim YJ, Cecchi F, le Loarer F, Italiano A. High throughput profiling of undifferentiated pleomorphic sarcomas identifies two main subgroups with distinct immune profile, clinical outcome and sensitivity to targeted therapies. EBioMedicine. 2020;62:103131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li C, Shen Y, Ren Y, Liu W, Li M, Liang W, Liu C, Li F. Oncogene mutation profiling reveals poor prognosis associated with FGFR1/3 mutation in liposarcoma. Hum Pathol. 2016;55:143–50.

    Article  PubMed  Google Scholar 

  75. Fernanda Amary M, Ye H, Berisha F, Khatri B, Forbes G, Lehovsky K, Frezza AM, Behjati S, Tarpey P, Pillay N, Campbell PJ, Tirabosco R, Presneau N, Strauss SJ, Flanagan AM. Fibroblastic growth factor receptor 1 amplification in osteosarcoma is associated with poor response to neo-adjuvant chemotherapy. Cancer Med. 2014;3(4):980–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.

    Article  PubMed  CAS  Google Scholar 

  77. VOTRIENT (pazopanib) Prescribing Information. Novartis Pharmaceuticals Corporation, Cambridge, MA, USA. 2020.

  78. Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, Hopper TM, Miller CG, Harrington LE, Onori JA, Mullin RJ, Gilmer TM, Truesdale AT, Epperly AH, Boloor A, Stafford JA, Luttrell DK, Cheung M. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.

    Article  PubMed  CAS  Google Scholar 

  79. NEXAVAR (sorafenib) Prescribing Information. Bayer HealthCare Pharmaceuticals, Whippany, NJ, USA. 2020.

  80. Gadaleta-Caldarola G, Divella R, Mazzocca A, Infusino S, Ferraro E, Filippelli G, Daniele A, Sabbà C, Abbate I, Brandi M. Sorafenib: the gold standard therapy in advanced hepatocellular carcinoma and beyond. Future Oncol. 2015;11(16):2263–6.

    Article  PubMed  CAS  Google Scholar 

  81. COMETRIQ (cabozantinib) Prescribing Information. Prescribing Information. Exelixis, Inc. Alameda, CA, USA. 2020.

  82. COMETRIQ (cabozantinib) Prescribing Information. Exelixis, Inc. Alameda, CA, USA. 2020.

  83. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    Article  PubMed  CAS  Google Scholar 

  84. SUTENT (sunitinib) Prescribing Information. Pfizer Inc, New York City, NY, USA. 2020.

  85. Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007;356(2):323–8.

    Article  PubMed  CAS  Google Scholar 

  86. AVASTIN (bevacizumab) Prescribing Information. Genentech, Inc., San Francisco, CA. 2020.

  87. Li J, Zhao X, Chen L, Guo H, Lv F, Jia K, Yv K, Wang F, Li C, Qian J, Zheng C, Zuo Y. Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. BMC Cancer. 2010;10:529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tian S, Quan H, Xie C, Guo H, Lü F, Xu Y, Li J, Lou L. YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci. 2011;102(7):1374–80.

    Article  PubMed  CAS  Google Scholar 

  89. SPRYCEL (dasatinib) Prescribing Information. Bristol-Myers Squibb Co., Princeton, NJ, USA. 2019.

  90. O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Druker BJ. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–5.

    Article  PubMed  CAS  Google Scholar 

  91. Grunwald V, et al. Randomized comparison of pazopanib and doxorubicin as first-line treatment in patients with metastatic soft tissue sarcoma age 60 years or older: results of a german intergroup study. J Clin Oncol. 2020;38(30):3555–64.

    Article  PubMed  Google Scholar 

  92. Weiss AR, Chen YL, Scharschmidt TJ, Chi YY, Tian J, Black JO, Davis JL, Fanburg-Smith JC, Zambrano E, Anderson J, Arens R, Binitie O, Choy E, Davis JW, Hayes-Jordan A, Kao SC, Kayton ML, Kessel S, Lim R, et al. Pathological response in children and adults with large unresected intermediate-grade or high-grade soft tissue sarcoma receiving preoperative chemoradiotherapy with or without pazopanib (ARST1321): a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2020;21(8):1110–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Toulmonde M, Pulido M, Ray-Coquard I, Andre T, Isambert N, Chevreau C, Penel N, Bompas E, Saada E, Bertucci F, Lebbe C, le Cesne A, Soulie P, Piperno-Neumann S, Sweet S, Cecchi F, Hembrough T, Bellera C, Kind M, et al. Pazopanib or methotrexate-vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMOPAZ): a non-comparative, randomised, open-label, multicentre, phase 2 study. Lancet Oncol. 2019;20(9):1263–72.

    Article  PubMed  CAS  Google Scholar 

  94. Stacchiotti S, Ferrari S, Redondo A, Hindi N, Palmerini E, Vaz Salgado MA, Frezza AM, Casali PG, Gutierrez A, Lopez-Pousa A, Grignani G, Italiano A, LeCesne A, Dumont S, Blay JY, Penel N, Bernabeu D, de Alava E, Karanian M, et al. Pazopanib for treatment of advanced extraskeletal myxoid chondrosarcoma: a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2019;20(9):1252–62.

    Article  PubMed  CAS  Google Scholar 

  95. Martin-Broto J, Stacchiotti S, Lopez-Pousa A, Redondo A, Bernabeu D, de Alava E, Casali PG, Italiano A, Gutierrez A, Moura DS, Peña-Chilet M, Diaz-Martin J, Biscuola M, Taron M, Collini P, Ranchere-Vince D, Garcia del Muro X, Grignani G, Dumont S, et al. Pazopanib for treatment of advanced malignant and dedifferentiated solitary fibrous tumour: a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2019;20(1):134–44.

    Article  PubMed  CAS  Google Scholar 

  96. Chow W, Frankel P, Ruel C, Araujo DM, Milhem M, Okuno S, Hartner L, Undevia S, Staddon A. Results of a prospective phase 2 study of pazopanib in patients with surgically unresectable or metastatic chondrosarcoma. Cancer. 2020;126(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  97. Sleijfer S, Ray-Coquard I, Papai Z, le Cesne A, Scurr M, Schöffski P, Collin F, Pandite L, Marreaud S, de Brauwer A, van Glabbeke M, Verweij J, Blay JY. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009;27(19):3126–32.

    Article  PubMed  CAS  Google Scholar 

  98. Samuels BL, Chawla SP, Somaiah N, Staddon AP, Skubitz KM, Milhem MM, Kaiser PE, Portnoy DC, Priebat DA, Walker MS, Stepanski EJ. Results of a prospective phase 2 study of pazopanib in patients with advanced intermediate-grade or high-grade liposarcoma. Cancer. 2017;123(23):4640–7.

    Article  PubMed  CAS  Google Scholar 

  99. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.

    Article  PubMed  CAS  Google Scholar 

  100. Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F, Lederle W. Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther. 2013;12(7):1322–31.

    Article  PubMed  CAS  Google Scholar 

  101. Schmieder R, Hoffmann J, Becker M, Bhargava A, Müller T, Kahmann N, Ellinghaus P, Adams R, Rosenthal A, Thierauch KH, Scholz A, Wilhelm SM, Zopf D. Regorafenib (BAY 73-4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer. 2014;135(6):1487–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hoff S, et al. Immunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer. Ann Oncol. 2017;28(suppl_5):Abstract 1198P.

    Google Scholar 

  103. Grothey A, van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12.

    Article  PubMed  CAS  Google Scholar 

  104. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Cheng AL, Llovet JM, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66.

    Article  PubMed  CAS  Google Scholar 

  105. George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Butrynski JE, Morgan JA, Wagner AJ, Choy E, Tap WD, Yap JT, van den Abbeele AD, Manola JB, Solomon SM, Fletcher JA, von Mehren M, Demetri GD. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol. 2012;30(19):2401–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Miyake K, Kiyuna T, Kawaguchi K, Higuchi T, Oshiro H, Zhang Z, Wangsiricharoen S, Razmjooei S, Li Y, Nelson SD, Murakami T, Hiroshima Y, Matsuyama R, Bouvet M, Chawla SP, Singh SR, Endo I, Hoffman RM. Regorafenib regressed a doxorubicin-resistant Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cancer Chemother Pharmacol. 2019;83(5):809–15.

    Article  PubMed  CAS  Google Scholar 

  107. Harrison DJ, Gill JD, Roth ME, Zhang W, Teicher B, Erickson S, Gatto G, Kurmasheva RT, Houghton PJ, Smith MA, Kolb EA, Gorlick R. Initial in vivo testing of a multitarget kinase inhibitor, regorafenib, by the Pediatric Preclinical Testing Consortium. Pediatr Blood Cancer. 2020;67(6):e28222.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Daudigeos-Dubus E, le Dret L, Lanvers-Kaminsky C, Bawa O, Opolon P, Vievard A, Villa I, Pagès M, Bosq J, Vassal G, Zopf D, Geoerger B. Regorafenib: antitumor activity upon mono and combination therapy in preclinical pediatric malignancy models. PLoS One. 2015;10(11):e0142612.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mir O, Brodowicz T, Italiano A, Wallet J, Blay JY, Bertucci F, Chevreau C, Piperno-Neumann S, Bompas E, Salas S, Perrin C, Delcambre C, Liegl-Atzwanger B, Toulmonde M, Dumont S, Ray-Coquard I, Clisant S, Taieb S, Guillemet C, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17(12):1732–42.

    Article  PubMed  CAS  Google Scholar 

  110. •• Penel N, et al. A double-blind placebo-controlled randomized phase II trial assessing the activity and safety of regorafenib in non-adipocytic sarcoma patients previously treated with both chemotherapy and pazopanib. Eur J Cancer. 2020;126:45–55 A double-blind, placebo-controlled, randomized phase 2 trial demonstrating meaningful anti-tumor activity with regorafenib in patients with non-adipocytic STS who have received prior treatment with both chemotherapy and pazopanib.

    Article  PubMed  CAS  Google Scholar 

  111. Riedel RF, et al. A randomized, double-blind, placebo-controlled, phase II study of regorafenib vs placebo in advanced/metastatic, treatment-refractory liposarcoma: results from the SARC024 study. J Clin Oncol. 2018;36(suppl):Abstract 11505.

    Article  Google Scholar 

  112. •• Davis LE, et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J Clin Oncol. 2019;37(16):1424–31 A double-blind, randomized, phase 2 trial demonstrating improved PFS with regorafenib versus placebo for patients with relapsed metastatic osteosarcoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Attia S, et al. A phase II trial of regorafenib (REGO) in patients (pts) with advanced Ewing sarcoma and related tumors (EWS) of soft tissue and bone: SARC024 trial results. J Clin Oncol. 2017;35(suppl):Abstract 11005.

    Article  Google Scholar 

  114. •• Duffaud F, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019;20(1):120–33 A double-blind, randomized, placebo-controlled phase 2 trial demonstrating meaningful antitumor activity in patients with recurrent, progressive, or metatstatic osteosarcoma after failure of chemotherapy.

    Article  PubMed  CAS  Google Scholar 

  115. Duffaud F, Italiano A, Bompas E, Rios M, Penel N, Mir O, Piperno-Neumann S, Chevreau C, Delcambre C, Bertucci F, Boudou-Rouquette P, Cancel M, Perrin C, Saada-Bouzid E, Monard L, Schiffler C, Chaigneau L, Hervieu A, Collard O, et al. Efficacy and safety of regorafenib in patients with metastatic or locally advanced chondrosarcoma: Results of a non-comparative, randomised, double-blind, placebo controlled, multicentre phase II study. Eur J Cancer. 2021;150:108–18.

    Article  PubMed  CAS  Google Scholar 

  116. Duffaud F, Blay JY, Mir O, Chevreau CM, Rouquette PB, Kalbacher E, Penel N, Perrin C, Laurence V, Bompas E, Saada-Bouzid E, Delcambre C, Bertucci F, Cancel M, Schiffler C, Monard L, Bouvier C, Vidal V, Gaspar N, Chabaud S. LBA68 Results of the randomized, placebo (PL)-controlled phase II study evaluating the efficacy and safety of regorafenib (REG) in patients (pts) with metastatic relapsed Ewing sarcoma (ES), on behalf of the French Sarcoma Group (FSG) and UNICANCER. Ann Oncol. 2020;31:S1199.

    Article  Google Scholar 

  117. Agulnik M, et al. Multicenter, open-label phase II study of daily oral regorafenib for chemotherapy-refractory, metastatic and locally advanced angiosarcoma. J Clin Oncol. 2020;38(15_suppl):11561.

    Article  Google Scholar 

  118. Marrari A, et al. Activity of regorafenib in advanced pretreated soft tissue sarcoma: Results of a single-center phase II study. Medicine. 2020;99(26):e20719 A single-center, phase 2 study showing regorafenib was well-tolerated and demonstrated clinical activity in patients with non-adipocytic STS (4 subtypes) who had previously received treatment with chemotherapy.

  119. Geoerger B, et al. Phase I dose-escalation and pharmacokinetic (PK) study of regorafenib in pediatric patients with recurrent or refractory solid malignancies. J Clin Oncol. 2016;34(suppl):Abstract 10542.

    Article  Google Scholar 

  120. Casanova M, et al. Phase 1 study of regorafenib in combination with vincristine and irinotecan in pediatric patients with recurrent or refractory solid tumors. J Clin Oncol. 2020;XX(suppl):Abstract 10507.

    Article  Google Scholar 

  121. WHO. Soft tissue and bone tumours: WHO Classification of Tumours, 5th Edition, Volume 3. Lyon: IARC Publications; 2020.

    Google Scholar 

  122. Jones RL, Fisher C, al-Muderis O, Judson IR. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer. 2005;41(18):2853–60.

    Article  PubMed  CAS  Google Scholar 

  123. Nakamura T, Matsumine A, Kawai A, Araki N, Goto T, Yonemoto T, Sugiura H, Nishida Y, Hiraga H, Honoki K, Yasuda T, Boku S, Sudo A, Ueda T. The clinical outcome of pazopanib treatment in Japanese patients with relapsed soft tissue sarcoma: A Japanese Musculoskeletal Oncology Group (JMOG) study. Cancer. 2016;122(9):1408–16.

    Article  PubMed  CAS  Google Scholar 

  124. Achilles EG, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken WD, Flynn E, Folkman J. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for "no take" of human tumors in mice. J Natl Cancer Inst. 2001;93(14):1075–81.

    Article  PubMed  CAS  Google Scholar 

  125. Almog N, Henke V, Flores L, Hlatky L, Kung AL, Wright RD, Berger R, Hutchinson L, Naumov GN, Bender E, Akslen LA, Achilles EG, Folkman J, Almog N, Henke V, Flores L, Hlatky L, Kung AL, Wright RD, et al. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J. 2006;20(7):947–9.

    Article  PubMed  CAS  Google Scholar 

  126. Sleijfer S, Gorlia T, Lamers C, Burger H, Blay JY, le Cesne A, Scurr M, Collin F, Pandite L, Marreaud S, Hohenberger P. Cytokine and angiogenic factors associated with efficacy and toxicity of pazopanib in advanced soft-tissue sarcoma: an EORTC-STBSG study. Br J Cancer. 2012;107(4):639–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Duffaud F, Chabaud S, Chevreau CM, Italiano A, Perrin C, Isambert N, Piperno-Neumann S, Saada-Bouzid E, Bertucci F, Cupissol D, Kalbacher E, Narciso B, Schiffler C, de Sousa Carvalho N, Monard L, Bouvier C, Vidal V, Blay JY, Mir O. LBA58 Results of the randomized, placebo (PL)-controlled phase II study evaluating the efficacy and safety of regorafenib (REGO) in patients (pts) with relapsed advanced or metastatic chordoma, on behalf of the French Sarcoma Group (FSG) and Unicancer. Ann Oncol. 2021;32:S1335.

    Article  Google Scholar 

  128. Han, G., et al., Integrated safety analysis from four hase 3 trials of regorafenib (poster P-008). In: International Liver Cancer Asssociation. 2017: Seoul, South Korea

  129. Sastre J, Argilés G, Benavides M, Feliú J, García-Alfonso P, García-Carbonero R, Grávalos C, Guillén-Ponce C, Martínez-Villacampa M, Pericay C. Clinical management of regorafenib in the treatment of patients with advanced colorectal cancer. Clin Transl Oncol. 2014;16(11):942–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. De Wit M, et al. Prevention and management of adverse events related to regorafenib. Support Care Cancer. 2014;22(3):837–46.

    Article  PubMed  Google Scholar 

  131. Chamberlain F, Farag S, Williams-Sharkey C, Collingwood C, Chen L, Mansukhani S, Engelmann B, al-Muderis O, Chauhan D, Thway K, Fisher C, Jones RL, Gennatas S, Benson C. Toxicity management of regorafenib in patients with gastro-intestinal stromal tumour (GIST) in a tertiary cancer centre. Clin Sarcoma Res. 2020;10(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bekaii-Saab TS, Ou FS, Ahn DH, Boland PM, Ciombor KK, Heying EN, Dockter TJ, Jacobs NL, Pasche BC, Cleary JM, Meyers JP, Desnoyers RJ, McCune JS, Pedersen K, Barzi A, Chiorean EG, Sloan J, Lacouture ME, Lenz HJ, Grothey A. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): a randomised, multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20(8):1070–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Pircher A, Wolf D, Heidenreich A, Hilbe W, Pichler R, Heidegger I. Synergies of targeting tumor angiogenesis and immune checkpoints in non-small cell lung cancer and renal cell cancer: from basic concepts to clinical reality. Int J Mol Sci. 2017;18(11).

  134. Heske CM, Mascarenhas L. Relapsed Rhabdomyosarcoma. J Clin Med. 2021;10(4):804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Brodowicz T, et al. Assessing prognostic and predictive biomarkers of regorafenib response in patients with advanced soft tissue sarcoma: REGOSARC study. Cancers (Basel). 2020;12(12).

  136. Jones RL, Katz D, Loggers ET, Davidson D, Rodler ET, Pollack SM. Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma. Med Oncol. 2017;34(10):167.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Maki RG, D'Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, Livingston MB, Cooney MM, Hensley ML, Mita MM, Takimoto CH, Kraft AS, Elias AD, Brockstein B, Blachère NE, Edgar MA, Schwartz LH, Qin LX, Antonescu CR, Schwartz GK. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(19):3133–40.

    Article  CAS  Google Scholar 

  138. Grignani G, Palmerini E, Dileo P, Asaftei SD, D’Ambrosio L, Pignochino Y, Mercuri M, Picci P, Fagioli F, Casali PG, Ferrari S, Aglietta M. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol. 2012;23(2):508–16.

    Article  PubMed  CAS  Google Scholar 

  139. von Mehren M, Rankin C, Goldblum JR, Demetri GD, Bramwell V, Ryan CW, Borden E. Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. Cancer. 2012;118(3):770–6.

    Article  Google Scholar 

  140. Ray-Coquard I, Italiano A, Bompas E, le Cesne A, Robin YM, Chevreau C, Bay JO, Bousquet G, Piperno-Neumann S, Isambert N, Lemaitre L, Fournier C, Gauthier E, Collard O, Cupissol D, Clisant S, Blay JY, Penel N, on behalf of the French Sarcoma Group (GSF/GETO). Sorafenib for patients with advanced angiosarcoma: a phase II Trial from the French Sarcoma Group (GSF/GETO). Oncologist. 2012;17(2):260–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Santoro A, Comandone A, Basso U, Soto Parra H, de Sanctis R, Stroppa E, Marcon I, Giordano L, Lutman FR, Boglione A, Bertuzzi A. Phase II prospective study with sorafenib in advanced soft tissue sarcomas after anthracycline-based therapy. Ann Oncol. 2013;24(4):1093–8.

    Article  PubMed  CAS  Google Scholar 

  142. Bompas E, le Cesne A, Tresch-Bruneel E, Lebellec L, Laurence V, Collard O, Saada-Bouzid E, Isambert N, Blay JY, Amela EY, Salas S, Chevreau C, Bertucci F, Italiano A, Clisant S, Penel N. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol. 2015;26(10):2168–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Raciborska A, Bilska K. Sorafenib in patients with progressed and refractory bone tumors. Med Oncol (Northwood, London, England). 2018;35(10):126.

    Article  Google Scholar 

  144. Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, Chevreau C, Duffaud F, Entz-Werlé N, Saada E, Ray-Coquard I, Lervat C, Gaspar N, Marec-Berard P, Pacquement H, Wright J, Toulmonde M, Bessede A, Crombe A, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(3):446–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hensley ML, Sill MW, Scribner DR Jr, Brown J, DeBernardo RL, Hartenbach EM, McCourt CK, Bosscher JR, Gehrig PA. Sunitinib malate in the treatment of recurrent or persistent uterine leiomyosarcoma: a Gynecologic Oncology Group phase II study. Gynecol Oncol. 2009;115(3):460–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. George S, Merriam P, Maki RG, van den Abbeele AD, Yap JT, Akhurst T, Harmon DC, Bhuchar G, O'Mara MM, D'Adamo DR, Morgan J, Schwartz GK, Wagner AJ, Butrynski JE, Demetri GD, Keohan ML. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27(19):3154–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Mahmood ST, Agresta S, Vigil CE, Zhao X, Han G, D'Amato G, Calitri CE, Dean M, Garrett C, Schell MJ, Antonia S, Chiappori A. Phase II study of sunitinib malate, a multitargeted tyrosine kinase inhibitor in patients with relapsed or refractory soft tissue sarcomas. Focus on three prevalent histologies: leiomyosarcoma, liposarcoma and malignant fibrous histiocytoma. Int J Cancer. 2011;129(8):1963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Agulnik M, Yarber JL, Okuno SH, von Mehren M, Jovanovic BD, Brockstein BE, Evens AM, Benjamin RS. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann Oncol. 2013;24(1):257–63.

    Article  PubMed  CAS  Google Scholar 

  149. Li F, Liao Z, Zhao J, Zhao G, Li X, du X, Yang Y, Yang J. Efficacy and safety of Apatinib in stage IV sarcomas: experience of a major sarcoma center in China. Oncotarget. 2017;8(38):64471–80.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Liao Z, Li F, Zhang C, Zhu L, Shi Y, Zhao G, Bai X, Hassan S, Liu X, Li T, Xing P, Zhao J, Zhang J, Xing R, Teng S, Yang Y, Chen K, Yang J. Phase II trial of VEGFR2 inhibitor apatinib for metastatic sarcoma: focus on efficacy and safety. Exp Mol Med. 2019;51(3):1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Weitao Y, Fangxing W, Qiqing C, Jiaqiang W. Efficacy and safety of apatinib in advanced sarcoma: an open-label, nonrandomized, single-center study of 45 patients. Anti-Cancer Drugs. 2019;30:30(7)–756.

    Article  Google Scholar 

  152. Yu W, et al. Efficacy and safety of apatinib in advanced soft tissue sarcoma: a multi-center, open-label phase II clinical trial. J Clin Oncol. 2018;36(15_suppl):11546.

    Article  Google Scholar 

  153. Zhou N, et al. Apatinib for patients with advanced sarcoma: initial clinical experience. J Clin Oncol. 2016;34(15_suppl):e22533.

    Article  Google Scholar 

  154. Xie L, Xu J, Sun X, Tang X, Yan T, Yang R, Guo W. Apatinib for advanced osteosarcoma after failure of standard multimodal therapy: an open label phase II clinical trial. Oncologist. 2019;24(7):e542–50.

    Article  PubMed  CAS  Google Scholar 

  155. Xie L, Xu J, Sun X, Liu K, Li X, He F, Liu X, Gu J, Lv Z, Yang R, Tang X, Yan T, Li D, Yang Y, Dong S, Sun K, Shen D, Guo W. Apatinib for treatment of inoperable metastatic or locally advanced chondrosarcoma: what we can learn about the biological behavior of chondrosarcoma from a two-center study. Cancer Manag Res. 2020;12:3513–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Wang Y, Min L, Zhou Y, Luo Y, Duan H, Tu C. The efficacy and safety of apatinib in Ewing's sarcoma: a retrospective analysis in one institution. Cancer Manag Res. 2018;10:6835–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Schuetze S, et al. Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma. J Clin Oncol. 2010;28(15_suppl):10009.

    Article  Google Scholar 

  158. Schuetze SM, Wathen JK, Lucas DR, Choy E, Samuels BL, Staddon AP, Ganjoo KN, von Mehren M, Chow WA, Loeb DM, Tawbi HA, Rushing DA, Patel SR, Thomas DG, Chugh R, Reinke DK, Baker LH. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 2016;122(6):868–74.

    Article  PubMed  CAS  Google Scholar 

  159. Schuetze SM, Bolejack V, Choy E, Ganjoo KN, Staddon AP, Chow WA, Tawbi HA, Samuels BL, Patel SR, von Mehren M, D'Amato G, Leu KM, Loeb DM, Forscher CA, Milhem MM, Rushing DA, Lucas DR, Chugh R, Reinke DK, Baker LH. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. Cancer. 2017;123(1):90–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the development of this review.

Corresponding author

Correspondence to Jean-Yves Blay MD, PhD.

Ethics declarations

Acknowledgments

Medical writing and editorial support were provided by Emily Clark of OPEN Health Communications, London, UK, with financial support from Bayer.

Conflict of Interest

Jean-Yves Blay has received advisory/consultancy fees from Bayer, Roche, Deciphera, Bristol-Myers Squibbs, Merck Sharpe & Dohme, and Pharmamar. Jean-Yves Blay has received speaker honoraria from Bayer, Roche, Pharmamar, and Deciphera. Jean-Yves Blay has received research grants or funding from Bayer, Roche, Deciphera, Bristol-Myers Squibbs, Merck Sharpe & Dohme, Pharmamar, Novartis, and GlaxoSmithKline. Florence Duffaud has received advisory/consultancy fees from Bayer, Pharmamar, GlaxoSmithKline, and Deciphera. Florence Duffaud has given a sponsored lecture and received speaker honoraria from Pharmamar and has received research grants or funding from Bayer. Suzanne George owns stock in Abbott Laboratories. Suzanne George has received speaker honoraria from C-Stone. Suzanne George has received advisory/consultancy fees from Blueprint Medicines, Deciphera, Bayer, Lilly, UpToDate, Research to Practise, MORE Health, Daiichi, Kayothera, and Immunicum. Suzanne George has received research grants or funding from Blueprint Medicines, Deciphera, Daiichi Sankyo RD Novare, Merck, Eisai, Springworks Therapeutics, TRACON Pharma, and Theseus Pharmaceuticals. Suzanne George holds patents, royalties, or other intellectual property with UptoDate. Suzanne George has given expert testimony for Bayer. Robert G. Maki has received speaker honoraria or advisory/consultancy fees from AADi, Bayer, BioAlta, Decipehra, Immune Design, Karyopharm, Presage, Springworks, American Board of Internal Medicine, American Society for Clinical Oncology, and UptoDate. Robert G. Maki has received research grants or funding from Amgen, Astex, Bayer, BioAlta, Boeringer Ingleheim, Exelixis, Genentech, Karyopharm, Presage, Rain, Springworks, Synox, and TRACON Pharma. Robert G. Maki has received travel expenses from Bayer and Tracon. Nicolas Penel has received research grants or funding from Bayer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sarcoma

Supplementary Information

ESM 1

(DOCX 36 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blay, JY., Duffaud, F., George, S. et al. Regorafenib for the Treatment of Sarcoma. Curr. Treat. Options in Oncol. 23, 1477–1502 (2022). https://doi.org/10.1007/s11864-022-00990-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-00990-0

Keywords

Navigation