Skip to main content

Advertisement

Log in

Which FLT3 Inhibitor for Treatment of AML?

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Treatment options in acute myeloid leukemia (AML) have improved significantly over the last decade with better understanding of disease biology and availability of a multitude of targeted therapies. The use of FLT3 inhibitors (FLT3i) in FLT3-mutated (FLT3mut) AML is one such development; however, the clinical decisions that govern their use and dictate the choice of the FLT3i are evolving. Midostaurin and gilteritinib are FDA-approved in specific situations; however, available data from clinical trials also shed light on the utility of sorafenib maintenance post-allogeneic stem cell transplantation (allo-SCT) and quizartinib as part of combination therapy in FLT3mut AML. The knowledge of the patient’s concurrent myeloid mutations, type of FLT3 mutation, prior FLT3i use, and eligibility for allo-SCT helps to refine the choice of FLT3i. Data from ongoing studies will further precisely define their use and help in making more informed choices. Despite improvements in FLT3i therapy, the definitive aim is to enable the eligible patient with FLT3mut AML (esp. ITD) to proceed to allo-SCT with regimens containing FLT3i incorporated prior to SCT and as maintenance after SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Institute NC. Cancer Stat Facts: Leukemia — Acute Myeloid Leukemia (AML): National Cancer Institute; 2021 [SEER data]. Available from: https://seer.cancer.gov/statfacts/html/amyl.html.

  2. • Kantarjian HM, Kadia TM, DiNardo CD, Welch MA, Ravandi F. Acute myeloid leukemia: treatment and research outlook for 2021 and the MD Anderson approach. Cancer. 2021;127(8):1186–207 An updated review of developments in AML treatment in 2021 from an MD Anderson perspective.

    Article  PubMed  Google Scholar 

  3. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.

    CAS  PubMed  Google Scholar 

  4. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol. 2011;4(1):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.

    Article  CAS  PubMed  Google Scholar 

  6. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110(4):1262–70.

    Article  CAS  PubMed  Google Scholar 

  7. Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J, et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009;114(12):2386–92.

    Article  CAS  PubMed  Google Scholar 

  8. Chan PM. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Protein Cell. 2011;2(2):108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. • Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21 A landmark paper looking at the myeloid mutation profile in AML and its significance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li W, Zhang L, Huang L, Mi Y, Wang J. Meta-analysis for the potential application of FLT3-TKD mutations as prognostic indicator in non-promyelocytic AML. Leuk Res. 2012;36(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  11. Boddu P, Kantarjian H, Borthakur G, Kadia T, Daver N, Pierce S, Andreeff M, Ravandi F, Cortes J, Kornblau SM. Co-occurrence of FLT3-TKD and NPM1 mutations defines a highly favorable prognostic AML group. Blood Adv. 2017;1(19):1546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood. 2008;111(5):2527–37.

    Article  CAS  PubMed  Google Scholar 

  13. Moreno I, Martin G, Bolufer P, Barragan E, Rueda E, Roman J, et al. Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologica. 2003;88(1):19–24.

    CAS  PubMed  Google Scholar 

  14. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mrózek K, Vardiman JW, George SL, Kolitz JE, Larson RA, Bloomfield CD, Caligiuri MA. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.

    CAS  PubMed  Google Scholar 

  15. Chen F, Sun J, Yin C, Cheng J, Ni J, Jiang L, Wang Q, Yu G, Wei Y, Liu X, Sun J, Carter BZ, Jiang X. Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation. Bone Marrow Transplant. 2020;55(4):740–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.

    Article  CAS  PubMed  Google Scholar 

  17. Walker A, Marcucci G. Molecular prognostic factors in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol. 2012;5(5):547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Port M, Böttcher M, Thol F, Ganser A, Schlenk R, Wasem J, Neumann A, Pouryamout L. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: a systematic review and meta-analysis. Ann Hematol. 2014;93(8):1279–86.

    Article  CAS  PubMed  Google Scholar 

  19. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC, Vandenberghe EA, Winship PR, Reilly JT FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000;111(1):190-195.

  20. • Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. This reference denotes the latest (ELN 2017) recommendations on AML diagnosis, risk stratification, and treatment and has been routinely used in guiding treatment decisions and classifying treatment response both in and outside clinical trials.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Ali B, Gesine B, Frederic B, Eolia B, Fabio C, Iman Abou D, et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2020;105(6):1507–16. Refers to the EBMT statement on practices pertaining to stem cell transplantation in FLT3-mutated AML. It opines on indications of SCT in FLT3-mutated AML, donor selection, and post-SCT maintenance therapy with FLT3 inhibitors.

    Article  Google Scholar 

  22. Dholaria B, Savani BN, Hamilton BK, Oran B, Liu HD, Tallman MS, Ciurea SO, Holtzman NG, II GLP, Devine SM, Mannis G, Grunwald MR, Appelbaum F, Rodriguez C, el Chaer F, Shah N, Hashmi SK, Kharfan-Dabaja MA, DeFilipp Z, et al. Hematopoietic cell transplantation in the treatment of newly diagnosed adult acute myeloid leukemia: an evidence-based review from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther. 2021;27(1):6–20.

  23. Chauhan PS, Bhushan B, Mishra AK, Singh LC, Saluja S, Verma S, Gupta DK, Mittal V, Chaudhry S, Kapur S. Mutation of FLT3 gene in acute myeloid leukemia with normal cytogenetics and its association with clinical and immunophenotypic features. Med Oncol. 2011;28(2):544–51.

    Article  CAS  PubMed  Google Scholar 

  24. How J, Sykes J, Gupta V, Yee KW, Schimmer AD, Schuh AC, et al. Influence of FLT3-internal tandem duplication allele burden and white blood cell count on the outcome in patients with intermediate-risk karyotype acute myeloid leukemia. Cancer. 2012;118(24):6110–7.

    Article  CAS  PubMed  Google Scholar 

  25. Hendrik JMJ, Peter JMV, Eveline SJMB, Jan Jacob S, Gert O, Edo V, et al. Prognostic impact of white blood cell count in intermediate risk acute myeloid leukemia: relevance of mutated NPM1 and FLT3-ITD. Haematologica. 2011;96(9):1310–7.

    Article  Google Scholar 

  26. Jabbour E, Guastad Daver N, Short NJ, Huang X, Chen H-C, Maiti A, Ravandi F, Cortes J, Abi Aad S, Garcia-Manero G, Estrov Z, Kadia T, O'Brien S, Dabaja B, Bueso-Ramos C, Strati P, Bivins C, Pierce S, Kantarjian H. Factors associated with risk of central nervous system relapse in patients with non-core binding factor acute myeloid leukemia. Am J Hematol. 2017;92(9):924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yalniz F, Abou Dalle I, Kantarjian H, Borthakur G, Kadia T, Patel K, Loghavi S, Garcia-Manero G, Sasaki K, Daver N, DiNardo C, Pemmaraju N, Short NJ, Yilmaz M, Bose P, Naqvi K, Pierce S, Nogueras González GM, Konopleva M, et al. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. Am J Hematol. 2019;94(9):984–91.

    Article  CAS  PubMed  Google Scholar 

  28. Schlenk RF, Kayser S, Bullinger L, Kobbe G, Casper J, Ringhoffer M, Held G, Brossart P, Lübbert M, Salih HR, Kindler T, Horst HA, Wulf G, Nachbaur D, Götze K, Lamparter A, Paschka P, Gaidzik VI, Teleanu V, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, Linch DC, Medical Research Council Adult Leukaemia Working Party. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84.

    Article  CAS  PubMed  Google Scholar 

  30. Ho AD, Schetelig J, Bochtler T, Schaich M, Schäfer-Eckart K, Hänel M, Rösler W, Einsele H, Kaufmann M, Serve H, Berdel WE, Stelljes M, Mayer J, Reichle A, Baldus CD, Schmitz N, Kramer M, Röllig C, Bornhäuser M, et al. Allogeneic stem cell transplantation improves survival in patients with acute myeloid leukemia characterized by a high allelic ratio of mutant FLT3-ITD. Biol Blood Marrow Transplant. 2016;22(3):462–9.

    Article  CAS  PubMed  Google Scholar 

  31. Santos FPS, Jones D, Qiao W, Cortes JE, Ravandi F, Estey EE, Verma D, Kantarjian H, Borthakur G. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer. 2011;117(10):2145–55.

    Article  CAS  PubMed  Google Scholar 

  32. Borthakur G, Beitinjaneh A, Lin E, Cortes JE, Luthra R, Ravandi F, et al. Impact of FLT3-ITD allelic ratio in treatment of acute myelogenous leukemia including allogeneic stem cell transplant. Blood. 2010;116(21):1722.

    Article  Google Scholar 

  33. Oran B, Cortes J, Beitinjaneh A, Chen HC, de Lima M, Patel K, Ravandi F, Wang X, Brandt M, Andersson BS, Ciurea S, Santos FP, de Padua Silva L, Shpall EJ, Champlin RE, Kantarjian H, Borthakur G. Allogeneic transplantation in first remission improves outcomes irrespective of FLT3-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22(7):1218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. This reference denotes the landmark RATIFY trial which led to the approval by the FDA of midostaurin in combination with standard cytarabine and daunorubicin induction and cytarabine consolidation in FLT3-mutated AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Döhner K, Thiede C, Jahn N, Panina E, Gambietz A, Larson RA, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood. 2020;135(5):371-380. Refers to an important study showing the interaction between FLT3 and NPM in AML stratified according to the ELN risk stratification and other disease and treatment factors that impact prognosis in FLT3-mutated AML.

  36. Linch DC, Hills RK, Burnett AK, Khwaja A, Gale RE. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124(2):273–6.

    Article  CAS  PubMed  Google Scholar 

  37. Helbig G, Koclęga A, Wieczorkiewicz-Kabut A, Woźniczka K, Kopińska A, Boral K, Grygoruk-Wiśniowska I, Stachowicz M, Karolczyk A. Pre-transplant FLT3/ITD status predicts outcome in FLT3-mutated acute myeloid leukemia following allogeneic stem cell transplantation. Ann Hematol. 2020;99(8):1845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaballa S, Saliba R, Oran B, Brammer JE, Chen J, Rondon G, Alousi AM, Kebriaei P, Marin D, Popat UR, Andersson BS, Shpall EJ, Jabbour E, Daver N, Andreeff M, Ravandi F, Cortes J, Patel K, Champlin RE, Ciurea SO. Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. Am J Hematol. 2017;92(4):331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Griffin JD, Song Y, Yang H, Freimark J, Shah MV. Post-transplant maintenance therapy in patients with FLT3-mutated acute myeloid leukemia: real-world treatment patterns and outcomes. Eur J Haematol. 2021;107(5):553–65.

    Article  CAS  PubMed  Google Scholar 

  40. Rosnet O, Bühring HJ, de Lapeyrière O, Beslu N, Lavagna C, Marchetto S, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 1996;95(3-4):218–23.

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9.

    Article  CAS  PubMed  Google Scholar 

  42. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, Jones-Bolin S, Ruggeri B, Dionne C, Small D. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99(11):3885–91.

    Article  CAS  PubMed  Google Scholar 

  43. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, Murphy KM, Dauses T, Allebach J, Small D. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10):3669–76.

    Article  CAS  PubMed  Google Scholar 

  44. Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in acute myeloid leukemia: current status and future directions. Mol Cancer Ther. 2017;16(6):991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ke Y-Y, Singh VK, Coumar MS, Hsu YC, Wang W-C, Song J-S, Chen CH, Lin WH, Wu SH, Hsu JTA, Shih C, Hsieh HP. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep. 2015;5(1):11702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia. 2015;29(12):2390–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  48. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  49. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835–44.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang W, Konopleva M, Shi Y-x, McQueen T, Harris D, Ling X, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.

    Article  CAS  PubMed  Google Scholar 

  51. Gautam B, Hagop K, Farhad R, Weiguo Z, Marina K, John JW, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96(1):62–8.

    Article  Google Scholar 

  52. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, Estrov Z, Quintás-Cardama A, Small D, Cortes J, Andreeff M. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.

    Article  CAS  PubMed  Google Scholar 

  53. Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood. 2012;119(22):5133–43.

    Article  CAS  PubMed  Google Scholar 

  54. Ali B, Myriam L, Giorgia B, Azedine D, Jakob P, Gerard S, et al. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: a report of the EBMT Acute Leukemia Working Party. Haematologica. 2019;104(9):e398–401.

    Article  Google Scholar 

  55. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Götze K, Linn YC, Kröger M, Reiter A, Salih HR, Heinicke T, Stuhlmann R, Müller L, Giagounidis A, Meyer RG, Brugger W, Vöhringer M, Dreger P, Mori M, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma M, Ravandi F, Bayraktar UD, Chiattone A, Bashir Q, Giralt S, Chen J, Qazilbash M, Kebriaei P, Konopleva M, Andreeff M, Cortes J, McCue D, Kantarjian H, Champlin RE, de Lima M. Treatment of FLT3-ITD-positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol Blood Marrow Transplant. 2011;17(12):1874–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, O'Brien S, Estrov Z, Borthakur G, Thomas D, Pierce SR, Brandt M, Byrd A, Bekele BN, Pratz K, Luthra R, Levis M, Andreeff M, Kantarjian HM. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28(11):1856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, Schaich M, Ottmann O, Duyster J, Wandt H, Fischer T, Giagounidis A, Neubauer A, Reichle A, Aulitzky W, Noppeney R, Blau I, Kunzmann V, Stuhlmann R, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol. 2013;31(25):3110–8.

    Article  CAS  PubMed  Google Scholar 

  59. •• Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691–9. This reference denotes the SORAML trial, which is one of the earliest randomized trials showing the RFS benefit of FLT3 inhibitor (sorafenib) combined with the standard of care chemotherapy in AML.

    Article  PubMed  Google Scholar 

  60. Röllig C, Serve H, Noppeney R, Hanoun M, Krug U, Baldus CD, Brandts CH, Kunzmann V, Einsele H, Krämer A, Müller-Tidow C, Schäfer-Eckart K, Neubauer A, Burchert A, Giagounidis A, Krause SW, Mackensen A, Aulitzky W, Herbst R, et al. Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: long-term follow-up of the randomized controlled SORAML trial. Leukemia. 2021;35(9):2517–25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sasaki K, Kantarjian HM, Kadia T, Patel K, Loghavi S, Garcia-Manero G, Jabbour EJ, DiNardo C, Pemmaraju N, Daver N, Dalle IA, Short N, Yilmaz M, Bose P, Naqvi K, Pierce S, Yalniz F, Cortes JE, Ravandi F. Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3-internal tandem duplication mutation-positive acute myeloid leukemia. Cancer. 2019;125(21):3755–66.

    Article  CAS  PubMed  Google Scholar 

  62. Ravandi F, Alattar ML, Grunwald MR, Rudek MA, Rajkhowa T, Richie MA, Pierce S, Daver N, Garcia-Manero G, Faderl S, Nazha A, Konopleva M, Borthakur G, Burger J, Kadia T, Dellasala S, Andreeff M, Cortes J, Kantarjian H, Levis M. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohanian M, Garcia-Manero G, Levis M, Jabbour E, Daver N, Borthakur G, Kadia T, Pierce S, Burger J, Richie MA, Patel K, Andreeff M, Estrov Z, Cortes J, Kantarjian H, Ravandi F. Sorafenib combined with 5-azacytidine in older patients with untreated FLT3-ITD mutated acute myeloid leukemia. Am J Hematol. 2018;93(9):1136–41.

    Article  CAS  PubMed  Google Scholar 

  64. Mathew NR, Baumgartner F, Braun L, O'Sullivan D, Thomas S, Waterhouse M, Müller TA, Hanke K, Taromi S, Apostolova P, Illert AL, Melchinger W, Duquesne S, Schmitt-Graeff A, Osswald L, Yan KL, Weber A, Tugues S, Spath S, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24(3):282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lange A, Jaskula E, Lange J, Dworacki G, Nowak D, Simiczyjew A, Mordak-Domagala M, Sedzimirska M. The sorafenib anti-relapse effect after alloHSCT is associated with heightened alloreactivity and accumulation of CD8+PD-1+ (CD279+) lymphocytes in marrow. PLoS One. 2018;13(1):e0190525.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen YB, Li S, Lane AA, Connolly C, Del Rio C, Valles B, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12):2042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Forcade E, Arcese W, Socié G, Blaise D, Halter J, Gerull S, Cornelissen JJ, Chevallier P, Maertens J, Schaap N, el-Cheikh J, Esteve J, Nagler A, Mohty M. Allogeneic stem cell transplantation for FLT3-mutated acute myeloid leukemia: in vivo T-cell depletion and posttransplant sorafenib maintenance improve survival. A Retrospective Acute Leukemia Working Party-European Society for Blood and Marrow Transplant Study. Clin Hematol Int. 2019;1(1):58–74.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Burchert A, Bug G, Fritz LV, Finke J, Stelljes M, Röllig C, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3–internal tandem duplication mutation (SORMAIN). J Clin Oncol. 2020;38(26):2993–3002. This refers to the SORMAIN trial, which showed significant improvement in 24-month OS and RFS when sorafenib maintenance was administered as a maintenance therapy after allogeneic SCT in FLT3 ITD-mutated AML compared to placebo.

    Article  PubMed  Google Scholar 

  69. Xuan L, Wang Y, Huang F, Fan Z, Xu Y, Sun J, Xu N, Deng L, Li X, Liang X, Luo X, Shi P, Liu H, Wang Z, Jiang L, Yu C, Zhou X, Lin R, Chen Y, et al. Sorafenib maintenance in patients with <em>FLT3</em>-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020;21(9):1201–12.

    Article  CAS  PubMed  Google Scholar 

  70. Liu T, Ivaturi V, Sabato P, Gobburu JVS, Greer JM, Wright JJ, Smith BD, Pratz KW, Rudek MA, on behalf of the ETCTN-6745 study team. Sorafenib dose recommendation in acute myeloid leukemia based on exposure-FLT3 relationship. Clin Transl Sci. 2018;11(4):435–43.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pratz KW, Rudek MA, Smith BD, Karp J, Gojo I, Dezern A, Jones RJ, Greer J, Gocke C, Baer MR, Duong VH, Rosner G, Zahurak M, Wright JJ, Emadi A, Levis M, ETCTN-8922 study team. A Prospective study of peritransplant sorafenib for patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic transplantation. Biol Blood Marrow Transplant. 2020;26(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  72. Senapati J, Devasia AJ, Ganapule A, George L, Viswabandya A. Sorafenib induced hand foot skin rash in FLT3 ITD mutated acute myeloid leukemia-a case report and review of literature. Mediterr J Hematol Infect Dis. 2014;6(1):e2014016-e.

    Article  Google Scholar 

  73. Rosenberg MW, Watanabe-Smith K, Tyner JW, Tognon CE, Druker BJ, Borate U. Genomic markers of midostaurin drug sensitivity in FLT3 mutated and FLT3 wild-type acute myeloid leukemia patients. Oncotarget. 2020;11(29):2807–18.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schmalbrock LK, Dolnik A, Cocciardi S, Sträng E, Theis F, Jahn N, Panina E, Blätte TJ, Herzig J, Skambraks S, Rücker FG, Gaidzik VI, Paschka P, Fiedler W, Salih HR, Wulf G, Schroeder T, Lübbert M, Schlenk RF, et al. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin. Blood. 2021;137(22):3093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  76. Fischer T, Stone RM, DeAngelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Furukawa Y, Vu HA, Akutsu M, Odgerel T, Izumi T, Tsunoda S, Matsuo Y, Kirito K, Sato Y, Mano H, Kano Y. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia. 2007;21(5):1005–14.

    Article  CAS  PubMed  Google Scholar 

  78. Möllgård L, Deneberg S, Nahi H, Bengtzen S, Jonsson-Videsäter K, Fioretos T, Andersson A, Paul C, Lehmann S. The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol. 2008;62(3):439–48.

    Article  PubMed  Google Scholar 

  79. Odgerel T, Kikuchi J, Wada T, Shimizu R, Futaki K, Kano Y, Furukawa Y. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene. 2008;27(22):3102–10.

    Article  CAS  PubMed  Google Scholar 

  80. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G, Cortes J, Kantarjian HM, DeAngelo DJ, Huntsman-Labed A, Dutreix C, del Corral A, Giles F. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Larson RA, Mandrekar SJ, Huebner LJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Döhner K, Marcucci G, Voso MT, Klisovic RB, Galinsky I, Wei AH, Sierra J, Sanz MA, Brandwein JM, de Witte T, et al. Midostaurin reduces relapse in FLT3-mutant acute myeloid leukemia: the Alliance CALGB 10603/RATIFY trial. Leukemia. 2021;35(9):2539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Voso MT, Larson RA, Jones D, Marcucci G, Prior T, Krauter J, Heuser M, Lavorgna S, Nomdedeu J, Geyer SM, Walker A, Wei AH, Sierra J, Sanz MA, Brandwein JM, de Witte TM, Jansen JH, Niederwieser D, Appelbaum FR, et al. Midostaurin in patients with acute myeloid leukemia and FLT3-TKD mutations: a subanalysis from the RATIFY trial. Blood Adv. 2020;4(19):4945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ofran Y, Leiba R, Frisch A, Horesh N, Henig I, Yehudai-Ofir D, Moshe Y, Neaman M, Ganzel C, Gal-Rabinovich K, Hellmann I, Weinstein V, Berger T, Wolach O. Midostaurin in combination with chemotherapy is most effective in patients with acute myeloid leukemia presenting with high FLT3-ITD allelic ratio who proceed to allogeneic stem cell transplantation while in first complete remission. Eur J Haematol. 2021;106(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  84. Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, Kadia T, Estrov Z, Garcia-Manero G, Konopleva M, Rajkhowa T, Durand M, Andreeff M, Levis M, Cortes J. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90(4):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maziarz RT, Levis M, Patnaik MM, Scott BL, Mohan SR, Deol A, Rowley SD, Kim DDH, Hernandez D, Rajkhowa T, Haines K, Bonifacio G, Rine P, Purkayastha D, Fernandez HF. Midostaurin after allogeneic stem cell transplant in patients with FLT3-internal tandem duplication-positive acute myeloid leukemia. Bone Marrow Transplant. 2021;56(5):1180–9.

    Article  CAS  PubMed  Google Scholar 

  86. Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, Schroeder T, Kindler T, Lübbert M, Wolf D, Westermann J, Kraemer D, Götze KS, Horst HA, Krauter J, Girschikofsky M, Ringhoffer M, Südhoff T, Held G, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood. 2019;133(8):840–51.

    Article  CAS  PubMed  Google Scholar 

  87. Abbas HA, Alfayez M, Kadia T, Ravandi-Kashani F, Daver N. Midostaurin in acute myeloid leukemia: an evidence-based review and patient selection. Cancer Manag Res. 2019;11:8817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang ES, Baron J. Management of toxicities associated with targeted therapies for acute myeloid leukemia: when to push through and when to stop. Hematology. 2020;2020(1):57–66.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mori M, Kaneko N, Ueno Y, Yamada M, Tanaka R, Saito R, Shimada I, Mori K, Kuromitsu S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Investig New Drugs. 2017;35(5):556–65.

    Article  CAS  Google Scholar 

  90. Levis M, Perl AE. Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Advances. 2020;4(6):1178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee LY, Hernandez D, Rajkhowa T, Smith SC, Raman JR, Nguyen B, Small D, Levis M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood. 2017;129(2):257–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res. 2008;14(7):1926–30.

    Article  CAS  PubMed  Google Scholar 

  93. Perl AE, Altman JK, Cortes JE, Smith CC, Litzow M, Baer MR, et al. Final results of the chrysalis trial: a first-in-human phase 1/2 dose-escalation, dose-expansion study of gilteritinib (ASP2215) in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2016;128(22):1069.

    Article  Google Scholar 

  94. Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR, Claxton D, Erba HP, Gill S, Goldberg S, Jurcic JG, Larson RA, Liu C, Ritchie E, Schiller G, Spira AI, Strickland SA, Tibes R, Ustun C, Wang ES, Stuart R, Röllig C, Neubauer A, Martinelli G, Bahceci E, Levis M Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1&#x2013;2 study. Lancet Oncol 2017;18(8):1061-1075, Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study.

  95. •• Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381(18):1728–40. This refers to the landmark ADMIRAL trial which led to the approval by the FDA of gilteritinib monotherapy in R/R FLT3-mutated AML. This trial also opened the avenue for further trials with gilteritinib combination therapy in FLT3-mutated AML.

    Article  CAS  PubMed  Google Scholar 

  96. Perl AE, Martinelli G, Neubauer A, Berman E, Baer MR, Larson RA, et al. Long-term survivors and gilteritinib safety beyond one year in FLT3-mutated R/R AML: ADMIRAL trial follow-up. J Clin Oncol. 2020;38(15_suppl):7514.

    Article  Google Scholar 

  97. Pratz KW, Cherry M, Altman JK, Cooper B, Cruz JC, Jurcic JG, et al. Updated results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML). Blood. 2018;132(Supplement 1):564.

    Article  Google Scholar 

  98. Esteve J, Schots R, Bernal Del Castillo T, Lee J-H, Wang ES, Dinner S, et al. Multicenter, open-label, 3-arm study of gilteritinib, gilteritinib plus azacitidine, or azacitidine alone in newly diagnosed FLT3 mutated (FLT3mut+) acute myeloid leukemia (AML) patients ineligible for intensive induction chemotherapy: findings from the safety cohort. Blood. 2018;132(Supplement 1):2736.

    Article  Google Scholar 

  99. Astellas Reports XOSPATA® (gilteritinib) in combination with azacitidine did not meet endpoint of overall survival in newly diagnosed FLT3 mutation-positive acute myeloid leukemia patients ineligible for intensive induction chemotherapy [press release]. 2020.

  100. Luger SM, Sun Z, Loghavi S, Lazarus HM, Rowe JM, Tallman MS, et al. Phase II randomized trial of gilteritinib Vs midostaurin in newly diagnosed FLT3 mutated acute myeloid leukemia (AML). Blood. 2019;134(Supplement_1):1309-.

  101. Perl AE, Larson RA, Podoltsev NA, Strickland S, Wang ES, Schiller GJ, et al. Follow-up of patients with FLT3-mutated R/R AML in the phase 3 ADMIRAL trial. J Clin Oncol. 2021;39(15_suppl):7013-.

  102. Levis MJ, Hamadani M, Logan BR, Rosales M, Delgado D, Bahceci E, et al. BMT CTN Protocol 1506: a phase 3 trial of gilteritinib as maintenance therapy after allogeneic hematopoietic stem cell transplantation in patients with FLT3-ITD+ AML. Blood. 2019;134(Supplement_1):4602-.

  103. Jin Y, Xu Z, Yan H, He Q, Yang X, Luo P. A comprehensive review of clinical cardiotoxicity incidence of FDA-approved small-molecule kinase inhibitors. Front Pharmacol. 2020;11:891-.

  104. Kim L, Fowler B, Campbell CM, Slivnick J, Nawaz H, Kaka Y, Ruz P, Vallakati A, Baliga R, Vasu S, Addison D. Acute cardiotoxicity after initiation of the novel tyrosine kinase inhibitor gilteritinib for acute myeloid leukemia. Cardio-Oncology. 2021;7(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q, Sprankle KG, Patel HK, Levis M, Armstrong RC, James J, Bhagwat SS. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paul S, DiPippo AJ, Ravandi F, Kadia TM. Quizartinib in the treatment of FLT3-internal-tandem duplication-positive acute myeloid leukemia. Future Oncol. 2019;15(34):3885–94.

    Article  CAS  PubMed  Google Scholar 

  107. Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 2014;10(9):1571–9.

    Article  CAS  PubMed  Google Scholar 

  108. Kampa-Schittenhelm KM, Heinrich MC, Akmut F, Döhner H, Döhner K, Schittenhelm MM. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT isoforms. Mol Cancer. 2013;12(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aikawa T, Togashi N, Iwanaga K, Okada H, Nishiya Y, Inoue S, Levis MJ, Isoyama T. Quizartinib, a selective FLT3 inhibitor, maintains antileukemic activity in preclinical models of RAS-mediated midostaurin-resistant acute myeloid leukemia cells. Oncotarget. 2020;11(11):943–55.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G, Gammon G, Trone D, Armstrong RC, James J, Levis M. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cortes J, Perl AE, Döhner H, Kantarjian H, Martinelli G, Kovacsovics T, Rousselot P, Steffen B, Dombret H, Estey E, Strickland S, Altman JK, Baldus CD, Burnett A, Krämer A, Russell N, Shah NP, Smith CC, Wang ES, et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19(7):889–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cortes JE, Tallman MS, Schiller GJ, Trone D, Gammon G, Goldberg SL, Perl AE, Marie JP, Martinelli G, Kantarjian HM, Levis MJ. Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood. 2018;132(6):598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. •• Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory <em>FLT3</em>-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984–97. The referred QUANTUM-R trial was instrumental in showing improvement in OS of quizartinib monotherapy compared to salvage chemotherapy in R/R FLT3 ITD-mutated AML. However, due to some caveats, this did not lead to FDA approval of quizartinib.

    Article  CAS  PubMed  Google Scholar 

  115. Fletcher L, Joshi SK, Traer E. Profile of quizartinib for the treatment of adult patients with relapsed/refractory FLT3-ITD-positive acute myeloid leukemia: evidence to date. Cancer Manag Res. 2020;12:151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Altman JK, Foran JM, Pratz KW, Trone D, Cortes JE, Tallman MS. Phase 1 study of quizartinib in combination with induction and consolidation chemotherapy in patients with newly diagnosed acute myeloid leukemia. Am J Hematol. 2018;93(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  117. • Schlenk R, Dombret H, Amadori S, Montesinos P, Levis M, Sekeres MA, et al. QuANTUM-First: phase 3, double-blind, placebo-controlled study of quizartinib in combination with induction and consolidation chemotherapy, and as maintenance therapy in patients (pts) with newly diagnosed (NDx) FLT3-ITD acute myeloid leukemia (AML). Ann Oncol. 2017;28:v370 Refers to the Quantum-First trial model; preliminary data from which has been declared to be showing an OS improvement with quizartinib combination chemotherapy compared to chemotherapy alone in FLT3-mutated AML. The published data from this trial is pending.

    Article  Google Scholar 

  118. Swaminathan M, Kantarjian HM, Levis M, Guerra V, Borthakur G, Alvarado Y, DiNardo C, Kadia T, Garcia-Manero G, Ohanian M, Daver N, Konopleva M, Pemmaraju N, Ferrajoli A, Andreeff M, Jain N, Estrov Z, Jabbour EJ, Wierda WG, et al. A phase I/II study of the combination of quizartinib with azacitidine or low-dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome. Haematologica. 2021;106(8):2121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dennis M, Thomas I, Ariti C, Upton L, Burnett AK, Gilkes AF, et al. Randomised evaluation of quizartinib and low-dose ara-C vs low-dose ara-C in older acute myeloid leukemia patients. Blood Advances. 2021

  120. Ganguly S, Cortes JE, Krämer A, Levis MJ, Martinelli G, Perl AE, Russell NH, Arunachalam M, Santos CD, Gammon G, Lesegretain A, Mires DE, Pham H, Wang Y, Khaled SK. Clinical outcomes in patients with FLT3-ITD-mutated relapsed/refractory acute myelogenous leukemia undergoing hematopoietic stem cell transplantation after quizartinib or salvage chemotherapy in the QuANTUM-R trial. Transplant Cell Ther. 2021;27(2):153–62. This is an important post hoc analysis of the QUANTuM-R trial that shows the benefit of allo-SCT in quizartinib treated patients and the potential of quizartinib maintenance post SCT in FLT3mut patients.

  121. Smith CC, Lasater EA, Lin KC, Wang Q, McCreery MQ, Stewart WK, et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci U S A. 2014;111(14):5319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, Cortes J, Levis M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014;123(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stone RM, Wang ES, Goldberg AD, Sweet KL, Fathi AT, Liu H, et al. Crenolanib versus midostaurin combined with induction and consolidation chemotherapy in newly diagnosed FLT3 mutated AML. J Clin Oncol. 2019;37(15_suppl):TPS7068–TPS.

    Article  Google Scholar 

  124. • Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11(5):104. This refers to a recently updated review of treatment options specifically for FLT3-mutated AML in 2021, highlighting the MD Anderson approach.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ma J, Zhao S, Qiao X, Knight T, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Wang G, Zhao L, Lin H, Wang Y, Taub JW, Ge Y. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin Cancer Res. 2019;25(22):6815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, Mody V, Choo EF, Dail M, Shah NP, Konopleva M, Sampath D, Lasater EA. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica. 2021;106(4):1034–46.

    Article  PubMed  Google Scholar 

  127. Maiti A, DiNardo CD, Daver NG, Rausch CR, Ravandi F, Kadia TM, et al. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021;11(2):25.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Konopleva M, Thirman M, Pratz KW, Letai AG, Recher C, Pullarkat VA, Kantarjian HM, Dail M, Duan Y, Chyla BJ, Potluri J, Miller C, Dinardo CD, Wei AH. Results of venetoclax and azacitidine combination in chemotherapy ineligible untreated patients with acute myeloid leukemia with FLT3 mutations. Blood. 2020;136:8–10.

    Article  Google Scholar 

  129. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, Eastburn DJ, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019;9(8):1050–63.

    Article  CAS  PubMed  Google Scholar 

  130. Smith CC, Zhang C, Lin KC, Lasater EA, Zhang Y, Massi E, Damon LE, Pendleton M, Bashir A, Sebra R, Perl A, Kasarskis A, Shellooe R, Tsang G, Carias H, Powell B, Burton EA, Matusow B, Zhang J, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 "gatekeeper" F691L mutation with PLX3397. Cancer Discov. 2015;5(6):668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms underlying resistance to FLT3 inhibitors in acute myeloid leukemia. Biomedicines. 2020;8(8).

  132. Yilmaz M, Alfayez M, DiNardo CD, Borthakur G, Kadia TM, Konopleva MY, et al. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2021;14(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Numan Y, Abdel Rahman Z, Grenet J, Boisclair S, Bewersdorf JP, Collins C, et al. Gilteritinib clinical activity in relapsed/refractory FLT3 mutated acute myeloid leukemia previously treated with FLT3 inhibitors. Am J Hematol.n/a(n/a).

  134. Burchert A. Maintenance therapy for FLT3-ITD -mutated acute myeloid leukemia. Haematologica. 2021;106(3):664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Quizartinib added to chemotherapy demonstrates superior overall survival compared to chemotherapy alone in adult patients with newly diagnosed FLT3-ITD positive AML [press release]. Daiichi-Sankyo, 18 November 2021.

  136. Moore AS, Faisal A, Mak GWY, Miraki-Moud F, Bavetsias V, Valenti M, Box G, Hallsworth A, de Haven Brandon A, Xavier CPR, Stronge R, Pearson ADJ, Blagg J, Raynaud FI, Chopra R, Eccles SA, Taussig DC, Linardopoulos S. Quizartinib-resistant FLT3-ITD acute myeloid leukemia cells are sensitive to the FLT3-Aurora kinase inhibitor CCT241736. Blood Advances. 2020;4(7):1478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, et al. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell. 2021;39(7):999–1014.e8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Mahendra Kadia MD.

Ethics declarations

Conflict of Interest

Jayastu Senapati declares that he has no conflict of interest. Tapan Mahendra Kadia has received research funding from AbbVie, Agios Pharmaceuticals, Amgen, Genentech, Daiichi Sankyo, Jazz Pharmaceuticals, Novartis, Pfizer, and Sanofi-Aventis; has received compensation for service as a consultant from AbbVie, Agios Pharmaceuticals, Genentech, Jazz Pharmaceuticals, Pfizer, PulmoTech, Cellenkos, Ascentage Pharma Group, GenFleet Therapeutics, Astellas, and AstraZeneca; and has received speaker’s honoraria from CURE Pharmaceutical and Genzyme.

Human and Animal Rights Statement

Not applicable for the present manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, J., Kadia, T.M. Which FLT3 Inhibitor for Treatment of AML?. Curr. Treat. Options in Oncol. 23, 359–380 (2022). https://doi.org/10.1007/s11864-022-00952-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-00952-6

Keywords

Navigation