Skip to main content

Advertisement

Log in

Current WHO Guidelines and the Critical Role of Genetic Parameters in the Classification of Glioma: Opportunities for Immunotherapy

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

In the 5 years since the fourth edition of the WHO Classification of Tumors of the Central Nervous System (CNS) (revised) was released, the development of targeted sequencing and omics technology has helped researchers in the field of neuro-oncology to identify some new tumor types in clinical practice, as well as a series of genetic parameters related to tumor occurrence and development, poor prognosis, treatment response, etc. These findings not only provide basic knowledge for the classification of glioma, but also promote the progress of the treatment of gliomas. As a revolution in cancer treatment, immunotherapy has become a promising strategy since the pioneering discovery of lymphatics in the CNS. The advancement and clinical application of immunotherapy have strengthened the demand for accurate classification of glioma. In June 2021, the WHO and the International Agency for Research on Cancer (IARC) published the fifth edition of the WHO Classification of Tumors of the CNS. The fifth edition focuses on advancing the role of genetic parameters in the classification of glioma and divides glioma into more biologically and molecularly defined entities, with better natural history characteristics, and introduced new tumor types and subtypes, especially in the pediatric population. Most importantly, these updated classifications will enable clinicians to better assess the prognosis and formulate the optimal treatment of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(4):376–93. https://doi.org/10.1016/S1474-4422(18)30468-X.

  2. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21(Suppl 5):v1–v100.

    Article  Google Scholar 

  3. Yang P, Wang Y, Peng X, et al. Management and survival rates in patients with glioma in China (2004-2010): a retrospective study from a single-institution. J Neurooncol. 2013;113(2):259–66.

    Article  CAS  Google Scholar 

  4. Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.

    Article  CAS  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  Google Scholar 

  6. •• Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23:1231–51. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS) is the latest international standard for the classification of brain and spinal cord tumors. The fifth edition has achieved substantial changes by further advancing the role of molecular diagnosis in the classification of CNS tumors

    Article  CAS  Google Scholar 

  7. •• Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. A systematic and comprehensive introduction to the current state of immunotherapy for glioblastoma. A combination immunotherapy based on immune checkpoint inhibitors is proposed to reverse the local immunosuppression in the microenvironment and transform “cold” tumors into “hot” tumors in the future.

    Article  CAS  Google Scholar 

  8. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  CAS  Google Scholar 

  9. Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125(9):3413–21.

    Article  Google Scholar 

  10. Johanns TM, Dunn GP. Applied cancer immunogenomics: leveraging neoantigen discovery in glioblastoma. Cancer J. 2017;23(2):125–30.

    Article  CAS  Google Scholar 

  11. Weller M, Kaulich K, Hentschel B, Felsberg J, Gramatzki D, Pietsch T, et al. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer. 2014;134(10):2437–47. https://doi.org/10.1002/ijc.28576.

    Article  CAS  PubMed  Google Scholar 

  12. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X.

    Article  CAS  PubMed  Google Scholar 

  13. Reardon DA, Desjardins A, Vredenburgh JJ, O'Rourke DM, Tran DD, Fink KL, et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase ii trial. Clin Cancer Res. 2020;26(7):1586–94. https://doi.org/10.1158/1078-0432.CCR-18-1140.

    Article  CAS  PubMed  Google Scholar 

  14. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6(7):1003–10. https://doi.org/10.1001/jamaoncol.2020.1024.

    Article  PubMed  Google Scholar 

  15. Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–20. https://doi.org/10.1158/1078-0432.CCR-15-1678.

    Article  CAS  PubMed  Google Scholar 

  16. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018;140(2):317–28. https://doi.org/10.1007/s11060-018-2955-9.

    Article  CAS  PubMed  Google Scholar 

  17. Macedo N, Miller DM, Haq R, Kaufman HL. Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer. 2020;8(2):e001486.

    Article  Google Scholar 

  18. Friedman GK, Johnston JM, Bag AK, et al. Oncolytic HSV-1 G207 Immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–22.

    Article  CAS  Google Scholar 

  19. Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol. 2019;49(3):201–9.

    Article  Google Scholar 

  20. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–9.

    Article  CAS  Google Scholar 

  21. • Wen PY, Packer RJ. The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications. Neuro Oncol. 2021;23:1215–7. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS) has a very important impact on the clinical diagnosis and treatment of adult and pediatric gliomas.

    Article  Google Scholar 

  22. Brown NF, Carter T, Kitchen N, Mulholland P. Dabrafenib and trametinib in BRAFV600E mutated glioma. CNS Oncol. 2017;6(4):291–6.

    Article  CAS  Google Scholar 

  23. Reinhardt A, Stichel D, Schrimpf D, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273–91.

    Article  CAS  Google Scholar 

  24. Berghoff AS, Kiesel B, Widhalm G, et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol. 2017;19(11):1460–8.

    Article  CAS  Google Scholar 

  25. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465(7300):966.

    Article  CAS  Google Scholar 

  26. Flavahan WA, Drier Y, Liau BB, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529(7584):110–4.

    Article  CAS  Google Scholar 

  27. Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28(6):773–84.

    Article  CAS  Google Scholar 

  28. Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.

    Article  CAS  Google Scholar 

  29. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015;11(9):504–14.

    Article  CAS  Google Scholar 

  30. Yoshimoto K, Hatae R, Sangatsuda Y, et al. Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathol. 2017;34(3):103–12.

    Article  Google Scholar 

  31. Roux A, Pallud J, Saffroy R, et al. High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts. Neuro Oncol. 2020;22(8):1190–202.

    Article  CAS  Google Scholar 

  32. Le DT, Uram JN, Wang H, et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  Google Scholar 

  33. •• Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018;24(5):572–9. Although diffuse midline glioma with H3 K27 changes is an aggressive and universally fatal pediatric brain cancer, GD2-targeted CAR T cell therapy is expected to have a transformative impact on the treatment of this patient.

    Article  CAS  Google Scholar 

  34. Lieberman NAP, DeGolier K, Kovar HM, et al. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro Oncol. 2019;21(1):83–94.

    Article  CAS  Google Scholar 

  35. Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81.

    Article  CAS  Google Scholar 

  36. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  Google Scholar 

  37. Burr ML, Sparbier CE, Chan KL, et al. An evolutionarily conserved function of polycomb silences the MHC Class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385–401.e8.

    Article  CAS  Google Scholar 

  38. Jain SU, Khazaei S, Marchione DM, et al. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc Natl Acad Sci U S A. 2020;117(44):27354–64.

    Article  CAS  Google Scholar 

  39. Bradley CA. PRC2-mediated MHC-I silencing drives immune evasion. Nat Rev Cancer. 2019;19(12):664.

    Article  CAS  Google Scholar 

  40. Bedognetti D, Roelands J, Decock J, Wang E, Hendrickx W. The MAPK hypothesis: immune-regulatory effects of MAPK-pathway genetic dysregulations and implications for breast cancer immunotherapy. Emerg Top Life Sci. 2017;1(5):429–45.

    Article  CAS  Google Scholar 

  41. Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9.

    Article  Google Scholar 

  42. Ebert PJR, Cheung J, Yang Y, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44(3):609–21.

    Article  CAS  Google Scholar 

  43. Deken MA, Gadiot J, Jordanova ES, et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology. 2016;5(12):e1238557.

    Article  Google Scholar 

  44. Reis GF, Pekmezci M, Hansen HM, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52.

    Article  CAS  Google Scholar 

  45. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1-2):48–61.

    Article  CAS  Google Scholar 

  46. Johnson BJ, Costelloe EO, Fitzpatrick DR, et al. Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci U S A. 2003;100(5):2657–62.

    Article  CAS  Google Scholar 

  47. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyuan Ma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology (GJ Lesser, Section Editor)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Wang, Y. & Ma, C. Current WHO Guidelines and the Critical Role of Genetic Parameters in the Classification of Glioma: Opportunities for Immunotherapy. Curr. Treat. Options in Oncol. 23, 188–198 (2022). https://doi.org/10.1007/s11864-021-00930-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-021-00930-4

Keywords

Navigation