Skip to main content

Advertisement

Log in

How to Sequence Therapies in Waldenström Macroglobulinemia

  • Lymphoma (JL Muñoz, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

There are multiple treatment options in patients with Waldenström macroglobulinemia, including chemotherapy, monoclonal antibodies, proteasome inhibitors, and covalent Bruton tyrosine kinase (BTK) inhibitors. The choice of therapy should take into account the patient’s clinical presentation, comorbidities, and preferences. A thorough discussion should take place to outline the administration, safety, and efficacy of the regimens under consideration. The patient’s genomic profile can provide insightful information for the treatment selection. In the frontline and relapsed settings, we favor ibrutinib monotherapy over chemoimmunotherapy or proteasome inhibitor-based regimens in patients with MYD88 and without CXCR4 mutations. For patients with MYD88 and CXCR4 mutations or without MYD88 or CXCR4 mutations, chemoimmunotherapy or proteasome inhibitor-based regimens are favored, but efficacy data with ibrutinib in combination with rituximab and with novel covalent BTK inhibitors are emerging. Autologous stem cell transplant should be considered in special cases in the relapsed setting. Participation in clinical trials is positively encouraged in WM patients in frontline and relapsed settings. Agents of interest include the BCL2 antagonist venetoclax, the CXCR4 inhibitor mavorixafor, and the non-covalent BTK inhibitors pirtobrutinib and ARQ-531.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  Google Scholar 

  2. Cao X, Medeiros LJ, Xia Y, Wang X, Thomas SK, Loghavi S, et al. Clinicopathologic features and outcomes of lymphoplasmacytic lymphoma patients with monoclonal IgG or IgA paraprotein expression. Leuk Lymphoma. 2016;57(5):1104–13.

  3. Castillo JJ, Itchaki G, Gustine JN, Meid K, Flynn CA, Demos MG, et al. A matched case-control study comparing features, treatment and outcomes between patients with non-IgM lymphoplasmacytic lymphoma and Waldenstrom macroglobulinemia. Leuk Lymphoma. 2020;61(6):1388–94.

  4. Bustoros M, Sklavenitis-Pistofidis R, Kapoor P, Liu CJ, Kastritis E, Zanwar S, et al. Progression risk stratification of asymptomatic Waldenstrom macroglobulinemia. J Clin Oncol. 2019;37(16):1403–11.

  5. •• Treon SP, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012;367(9):826–33 This was the seminal manuscript in which the discovery of the MYD88 L265P mutation was first described.

  6. King RL, Gonsalves WI, Ansell SM, Greipp PT, Frederick LA, Viswanatha DS, et al. Lymphoplasmacytic lymphoma with a Non-IgM Paraprotein shows clinical and pathologic heterogeneity and may harbor MYD88 L265P mutations. Am J Clin Pathol. 2016;145(6):843–51.

  7. Varettoni M, Boveri E, Zibellini S, Tedeschi A, Candido C, Ferretti VV, et al. Clinical and molecular characteristics of lymphoplasmacytic lymphoma not associated with an IgM monoclonal protein: a multicentric study of the Rete Ematologica Lombarda (REL) network. Am J Hematol. 2019;94(11):1193–9.

  8. Itchaki G, Dubeau T, Keezer A, Meid K, Xu L, Yang G, et al. Non-IgM secreting lymphoplasmacytic lymphoma - experience of a reference center for Waldenstrom macroglobulinemia. Blood. 2018;132:2886.

  9. Jimenez C, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to Waldenstrom’s macroglobulinemia. Leukemia. 2013;27(8):1722–8.

  10. Poulain S, Boyle EM, Roumier C, Demarquette H, Wemeau M, Geffroy S, et al. MYD88 L265P mutation contributes to the diagnosis of Bing Neel syndrome. Br J Haematol. 2014;167(4):506–13.

  11. Schmidt J, Federmann B, Schindler N, Steinhilber J, Bonzheim I, Fend F, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol. 2015;169(6):795–803.

  12. Kraan W, Horlings HM, van Keimpema M, Schilder-Tol EJM, Oud MECM, Scheepstra C, et al. High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell lymphomas presenting at immune-privileged sites. Blood Cancer J. 2013;3:e139.

  13. Kraan W, van Keimpema M, Horlings HM, Schilder-Tol EJM, Oud MECM, Noorduyn LA, et al. High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma. Leukemia. 2014;28(3):719–20.

  14. Schrader AMR, Jansen PM, Willemze R, Vermeer MH, Cleton-Jansen AM, Somers SF, et al. High prevalence of MYD88 and CD79B mutations in intravascular large B-cell lymphoma. Blood. 2018;131(18):2086–9.

  15. Castillo JJ, Jurczyszyn A, Brozova L, Crusoe E, Czepiel J, Davila J, et al. IgM myeloma: a multicenter retrospective study of 134 patients. Am J Hematol. 2017;92(8):746–51.

  16. Treon SP, Gustine J, Xu L, Manning RJ, Tsakmaklis N, Demos M, et al. MYD88 wild-type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180(3):374–80.

  17. Treon SP, Xu L, Hunter Z. MYD88 Mutations and response to ibrutinib in Waldenstrom's macroglobulinemia. N Engl J Med. 2015;373(6):584–6 Determination of MYD88 mutational status plays an important role both in diagnosis of WM and in therapeutic decision making.

  18. Zanwar S, Abeykoon JP, Durot E, King R, Perez Burbano GE, Kumar S, et al. Impact of MYD88(L265P) mutation status on histological transformation of Waldenstrom macroglobulinemia. Am J Hematol. 2020;95(3):274–81.

  19. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123(26):4120–31.

  20. Treon SP, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–6 Important differences exist in the clinical presentation and survival of patients with WM based on the presence or absence of a CXCR4 mutation.

  21. • Castillo JJ, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenstrom macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019;187(3):356–63 This manuscript highlights the clinical characteristics in patients with CXCR4 mutated disease and discusses differences in nonsense and frameshift CXCR4 mutations.

    Article  CAS  Google Scholar 

  22. Poulain S, Roumier C, Venet-Caillault A, Figeac M, Herbaux C, Marot G, et al. Genomic landscape of CXCR4 mutations in Waldenstrom macroglobulinemia. Clin Cancer Res. 2016;22(6):1480–8.

  23. Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Xu L, et al. Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2018;184(6):1011–4.

  24. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121(11):2051–8.

  25. Gustine J, Meid K, Xu L, Hunter ZR, Castillo JJ, Treon SP. To select or not to select? The role of B-cell selection in determining the MYD88 mutation status in Waldenstrom macroglobulinaemia. Br J Haematol. 2017;176(5):822–4.

    Article  Google Scholar 

  26. Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;168(5):701–7.

    Article  CAS  Google Scholar 

  27. •• Treon SP, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia N Engl J Med. 2015;372(15):1430–40 This manuscript highlights the high response rates in patients with WM treated with single-agent ibrutinib.

    Article  CAS  Google Scholar 

  28. Treon SP, Meid K, Gustine J, Yang G, Xu L, Liu X, et al. Long-term follow-up of ibrutinib monotherapy in symptomatic, previously treated patients With Waldenstrom macroglobulinemia. J Clin Oncol. 2021;39(6):565–75.

  29. •• Treon SP, et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients With Waldenstrom macroglobulinemia. J Clin Oncol. 2018;36(27):2755–61 Ibrutinib plays an important role in WM patients with newly diagnosed disease.

    Article  CAS  Google Scholar 

  30. •• Dimopoulos MA, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenstrom's macroglobulinemia. N Engl J Med. 2018;378(25):2399–410 The combination of ibrutinib and rituximab is well-tolerated in WM and should be considered as a treatment option, especially in patients with CXCR4 mutated disease.

    Article  CAS  Google Scholar 

  31. Tam CS, Trotman J, Opat S, Burger JA, Cull G, Gottlieb D, et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134(11):851–9.

  32. Trotman J, Opat S, Gottlieb D, Simpson D, Marlton P, Cull G, et al. Zanubrutinib for the treatment of patients with Waldenstrom macroglobulinemia: 3 years of follow-up. Blood. 2020;136(18):2027–37.

  33. •• Tam CS, et al. A randomized phase 3 trial of zanubrutinib versus ibrutinib in symptomatic Waldenstrom macroglobulinemia:The Aspen Study. Blood. 2020;136(18):2038–50 Zanubrutinib is demonstrated in this manuscript to have similar response rates to ibrutinib, but an improved side effect profile.

    Article  CAS  Google Scholar 

  34. • Owen RG, et al. Acalabrutinib monotherapy in patients with Waldenstrom macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020;7(2):e112–21 Acalabrutinib has not yet been directly compared to ibrutinib in WM, but efficacy appears to be similar to other BTK inhibitors.

    Article  Google Scholar 

  35. Gustine JN, Meid K, Dubeau TE, Treon SP, Castillo JJ. Atrial fibrillation associated with ibrutinib in Waldenstrom macroglobulinemia. Am J Hematol. 2016;91(6):E312–3.

    Article  Google Scholar 

  36. Thompson PA, Lévy V, Tam CS, al Nawakil C, Goudot FX, Quinquenel A, et al. Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study. Br J Haematol. 2016;175(3):462–6.

  37. Gustine JN, Meid K, Dubeau T, Severns P, Hunter ZR, Guang Y, et al. Ibrutinib discontinuation in Waldenstrom macroglobulinemia: etiologies, outcomes, and IgM rebound. Am J Hematol. 2018;93(4):511–7.

  38. Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Treon SP. Ibrutinib withdrawal symptoms in patients with Waldenstrom macroglobulinemia. Haematologica. 2018;103(7):e307–10.

    Article  CAS  Google Scholar 

  39. Dimopoulos MA, Zervas C, Zomas A, Hamilos G, Gika D, Efstathiou E, et al. Extended rituximab therapy for previously untreated patients with Waldenstrom's macroglobulinemia. Clin Lymphoma. 2002;3(3):163–6.

  40. Gertz MA, Abonour R, Heffner LT, Greipp PR, Uno H, Rajkumar SV. Clinical value of minor responses after 4 doses of rituximab in Waldenstrom macroglobulinaemia: a follow-up of the Eastern Cooperative Oncology Group E3A98 trial. Br J Haematol. 2009;147(5):677–80.

    Article  CAS  Google Scholar 

  41. •• Rummel MJ, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10 This pivotal manuscript demonstrated the improved progression-free survival and improved toxicity profile or Benda-R compared with R-CHOP in patients with indolent non-Hodgkin lymphomas, including lymphoaplasmacytic lymphoma.

    Article  CAS  Google Scholar 

  42. Tedeschi A, Picardi P, Ferrero S, Benevolo G, Margiotta Casaluci G, Varettoni M, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenstrom macroglobulinemia. Leuk Lymphoma. 2015;56(9):2637–42.

  43. Paludo J, Abeykoon JP, Shreders A, Ansell SM, Kumar S, Ailawadhi S, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenstrom macroglobulinemia. Ann Hematol. 2018;97(8):1417–25.

  44. Rummel MJ, Lerchenmüller C, Hensel M, Goerner M, Buske C, Schulz H, et al. Two years rituximab maintenance vs. observation after first line treatment with bendamustine plus rituximab (B-R) in patients with Waldenström's macroglobulinemia (MW): results of a prospective, randomized, multicenter phase 3 study (the StiL NHL7-2008 MAINTAIN trial). Blood. 2019;134:343.

  45. Martin P, Chen Z, Cheson BD, Robinson KS, Williams M, Rajguru SA, et al. Long-term outcomes, secondary malignancies and stem cell collection following bendamustine in patients with previously treated non-Hodgkin lymphoma. Br J Haematol. 2017;178(2):250–6.

    Article  CAS  Google Scholar 

  46. Treon SP, Ioakimidis L, Soumerai JD, Patterson CJ, Sheehy P, Nelson M, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009;27(23):3830–5.

  47. Dimopoulos MA, García-Sanz R, Gavriatopoulou M, Morel P, Kyrtsonis MC, Michalis E, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013;122(19):3276–82.

  48. Ghobrial IM, Hong F, Padmanabhan S, Badros A, Rourke M, Leduc R, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010;28(8):1422–8.

  49. Levine T, Pestronk A, Florence J, al-Lozi MT, Lopate G, Miller T, et al. Peripheral neuropathies in Waldenstrom's macroglobulinaemia. J Neurol Neurosurg Psychiatry. 2006;77(2):224–8.

  50. Paba-Prada CE, Banwait R, Treon S, Ghobrial IM. Incidence of peripheral neuropathy in Waldenström macroglobulinemia patients at diagnosis. Blood. 2011;118(21):3692.

    Article  Google Scholar 

  51. Chen CI, Kouroukis CT, White D, Voralia M, Stadtmauer E, Stewart AK, et al. Bortezomib is active in patients with untreated or relapsed Waldenström’s macroglobulinemia: a phase ii study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(12):1570–5.

  52. Auer RL, Owen RG, D’Sa S, Pratt G, Popova B, Hadley LC, et al. R2W: subcutaneous bortezomib, cyclophosphamide and rituximab (BCR) versus fludarabine, cyclophosphamide and rituximab (FCR) for initial therapy of Waldenstrőm's macroglobulinemia: a randomised phase II study. Blood. 2016;128(22):618.

  53. Treon SP, Tripsas CK, Meid K, Kanan S, Sheehy P, Chuma S, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstrom's macroglobulinemia. Blood. 2014;124(4):503–10.

  54. Waxman AJ, Clasen S, Hwang WT, Garfall A, Vogl DT, Carver J, et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol. 2018;4(3):e174519.

  55. Castillo JJ, Meid K, Flynn CA, Chen J, Demos MG, Guerrera ML, et al. Ixazomib, dexamethasone, and rituximab in treatment-naive patients with Waldenstrom macroglobulinemia: long-term follow-up. Blood Adv. 2020;4(16):3952–9.

  56. Castillo JJ, Meid K, Gustine JN, Dubeau T, Severns P, Hunter ZR, et al. Prospective clinical trial of ixazomib, dexamethasone, and rituximab as primary therapy in Waldenstrom macroglobulinemia. Clin Cancer Res. 2018;24(14):3247–52.

  57. Kersten MJ, et al. Ixazomib, rituximab and dexamethasone (IRD) in patients with relapsed or progressive Waldenstrom's macroblobulinemia: results of the prospective phase I/II HOVON 124/Ecwm-R2 Trial. Blood. 2019;134(Supplement_1):344–4.

  58. Gustine JN, Meid K, Dubeau T, Hunter ZR, Xu L, Yang G, et al. Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2017;177(5):717–25.

  59. Gustine JN, Xu L, Tsakmaklis N, Demos MG, Kofides A, Chen JG, et al. CXCR4 (S338X) clonality is an important determinant of ibrutinib outcomes in patients with Waldenstrom macroglobulinemia. Blood Adv. 2019;3(19):2800–3.

  60. Sklavenitis-Pistofidis R, Capelletti M, Liu CJ, Reidy M, Zavidij O, Huynh D, et al. Bortezomib overcomes the negative impact of CXCR4 mutations on survival of Waldenstrom macroglobulinemia patients. Blood. 2018;132(24):2608–12.

  61. Laribi K, Poulain S, Willems L, Merabet F, le Calloch R, Eveillard JR, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2019;186(1):146–9.

  62. Castillo JJ, et al., CXCR4 mutational status does not impact outcomes in patients with Waldenstrom macroglobulinemia treated with proteasome inhibitors. Am J Hematol, 2020. Proteasome inhibitors are an important part of the arsenal of treatment options for patients with WM and can be used in patients with CXCR4 mutations with no detriment in overall survival compared to non-CXCR4 mutated disease.

  63. McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O’Brien S, Ulrick J, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123(15):2308–16.

  64. Hunter ZR, Xu L, Tsakmaklis N, Demos MG, Kofides A, Jimenez C, et al. Insights into the genomic landscape of MYD88 wild-type Waldenstrom macroglobulinemia. Blood Adv. 2018;2(21):2937–46.

  65. Abeykoon JP, Paludo J, King RL, Ansell SM, Gertz MA, LaPlant BR, et al. MYD88 mutation status does not impact overall survival in Waldenstrom macroglobulinemia. Am J Hematol. 2018;93(2):187–94.

  66. Kofides A, et al. Alternative mutations and isoform dysregulation in MYD88 in Waldenstrom's macroglobulinemia. Blood. 2018;132(Supplement 1):1566.

    Article  Google Scholar 

  67. • Dimopoulos M, et al. Zanubrutinib for the treatment of MYD88 wild-type Waldenstrom macroglobulinemia: a substudy of the phase 3 ASPEN trial. Blood Adv. 2020;4(23):6009–18 This substudy of the ASPEN trial analyzed the disease responses in patients characterized as having MYD88 wild-type disease.

    Article  Google Scholar 

  68. Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, Zervas K, Tsatalas C, Kokkinis G, et al. Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol. 2007;25(22):3344–9.

  69. Kastritis E, Gavriatopoulou M, Kyrtsonis MC, Roussou M, Hadjiharissi E, Symeonidis A, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126(11):1392–4.

  70. Buske C, Dimopoulos MA, Grunenberg A, Kastritis E, Tomowiak C, Mahé B, et al. Bortezomib in combination with dexamethasone, rituximab and cyclophosphamide (B-DRC) as first – line treatment of Waldenstrom’s macroglobulinemia: results of a prospectively randomized multicenter European phase II trial. Blood. 2020;136(Suppl 1):26.

  71. Leblond V, Johnson S, Chevret S, Copplestone A, Rule S, Tournilhac O, et al. Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenstrom macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol. 2013;31(3):301–7.

  72. Gavriatopoulou M, Kastritis E, Kyrtsonis MC, Vassilakopoulos TP, Roussou M, Fotiou D, et al. Phase 2 study of ofatumumab, fludarabine and cyclophosphamide in relapsed/refractory Waldenstrom's macroglobulinemia. Leuk Lymphoma. 2017;58(6):1506–8.

    Article  Google Scholar 

  73. Tamburini J, Lévy V, Chaleteix C, Fermand JP, Delmer A, Stalniewicz L, et al. Fludarabine plus cyclophosphamide in Waldenstrom's macroglobulinemia: results in 49 patients. Leukemia. 2005;19(10):1831–4.

    Article  CAS  Google Scholar 

  74. Tedeschi A, Benevolo G, Varettoni M, Battista ML, Zinzani PL, Visco C, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012;118(2):434–43.

  75. Treon SP, Branagan AR, Ioakimidis L, Soumerai JD, Patterson CJ, Turnbull B, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood. 2009;113(16):3673–8.

  76. Leleu X, Soumerai J, Roccaro A, Hatjiharissi E, Hunter ZR, Manning R, et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenstrom macroglobulinemia treated with nucleoside analogs. J Clin Oncol. 2009;27(2):250–5.

  77. Chakraborty R, Muchtar E, Gertz MA. The role of stem cell transplantation in Waldenstrom's macroglobulinemia. Best Pract Res Clin Haematol. 2016;29(2):229–40.

    Article  Google Scholar 

  78. Parrondo RD, Reljic T, Iqbal M, Ayala E, Tun HW, Kharfan-Dabaja MA, et al. Efficacy of autologous and allogeneic hematopoietic cell transplantation in Waldenstrom macroglobulinemia: a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk. 2020;20(10):e694–711.

  79. Saini NY, Patel RD, Varma A, Bashir Q, Delgado R, Rondon G, et al. Outcomes of autologous stem cell transplantation in Waldenstrom's macroglobulinemia. Ann Hematol. 2019;98(9):2233–5.

  80. NCCN Clinical practice guidelines in oncology (NCCN Guidelines®). Version 1.2021. Waldenström’s Macroglobulinemia/Lymphoplasmacytic Lymphoma. Available at http://www.nccn.org/professionals/physician_gls/pdf/waldenstroms.pdf. Accessed on April 14, 2021. The NCCN guidelines provide treatment recommendations for newly diagnosed WM, as well as relapsed/refractory disease.

  81. Castillo JJ, et al. Consensus treatment recommendations from the tenth International Workshop for Waldenstrom Macroglobulinaemia. Lancet Haematol. 2020;7(11):e827–37 The 10th International Workshop for WM produced consensus guidelines that provide recommendations for treatment of patients with WM.

  82. mSMART. Stratification for myeloma & risk-adapted therapy. Available at https://www.msmart.org/wm-treatment-guidelines. Accessed on April 14, 2021.

  83. •• Kastritis E, et al. Waldenstrom's macroglobulinaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv41–50 The ESMO guidelines provide treatment recommendations for newly diagnosed WM, as well as relapsed/refractory disease.

    Article  CAS  Google Scholar 

  84. Sacco A, Zhang Y, Maiso P, Manier S, Rossi G, Treon SP, et al. microRNA aberrations in Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2013;13(2):205–7.

  85. Awan FT, Schuh A, Brown JR, Furman RR, Pagel JM, Hillmen P, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3(9):1553–62.

  86. Rogers KA, Thompson PA, Allan JN, Coleman M, Sharman JP, Cheson BD, et al. Phase 2 study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2021.

  87. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.

  88. Chen JG, Liu X, Munshi M, Xu L, Tsakmaklis N, Demos MG, et al. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood. 2018;131(18):2047–59.

  89. Castillo J, et al. Multicenter prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leukemia. 2019;19(10, Supplement):e39–40.

    Article  Google Scholar 

  90. Castillo JJ, Libby EN, Ansell SM, Palomba ML, Meid K, Flynn CA, et al. Multicenter phase 2 study of daratumumab monotherapy in patients with previously treated Waldenstrom macroglobulinemia. Blood Adv. 2020;4(20):5089–92.

  91. Wang M, et al. LOXO-305, a next generation, highly selective, non-covalent BTK inhibitor in previously treated mantle cell lymphoma, Waldenström's macroglobulinemia, and other Non-Hodgkin lymphomas: results from the phase 1/2 BRUIN Study. Blood. 2020;136(Supplement 1):8–10.

    Google Scholar 

  92. Woyach J, et al. Final results of phase 1, dose escalation study evaluating ARQ 531 in patients with relapsed or refractory B-cell lymphoid malignancies. Blood. 2019;134(Supplement_1):4298–8.

  93. Dreyling M, Santoro A, Mollica L, Leppä S, Follows G, Lenz G, et al. Long-term safety and efficacy of the PI3K inhibitor copanlisib in patients with relapsed or refractory indolent lymphoma: 2-year follow-up of the CHRONOS-1 study. Am J Hematol. 2020;95(4):362–71.

  94. Tomowiak C, et al. Open label non-randomized phase II study exploring «chemo-free » treatment association with idelalisib + obinutuzumab in patients with relapsed/refractory (R/R) Waldenstrom's macroglobulinemia (MW), a Filo Trial: Results of the Intermediary Analysis of the Induction Phase. Blood. 2019;134(Supplement_1):346–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Castillo MD.

Ethics declarations

Conflict of Interest

Shayna Sarosiek declares that she has no conflict of interest. Steven P. Treon has received research funding from AbbVie/Pharmacyclics, Janssen, BeiGene, and Eli Lilly; and has received compensation for service as a consultant from AbbVie/Pharmacyclics, Janssen, BeiGene, and Bristol-Myers Squibb. Jorge J. Castillo has received research funding from AbbVie, BeiGene, Janssen, Pharmacyclics, and TG Therapeutics; and has received compensation for service as a consultant from AbbVie, BeiGene, Janssen, Pharmacyclics, and Roche.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarosiek, S., Treon, S.P. & Castillo, J.J. How to Sequence Therapies in Waldenström Macroglobulinemia. Curr. Treat. Options in Oncol. 22, 92 (2021). https://doi.org/10.1007/s11864-021-00890-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00890-9

Keywords

Navigation