Skip to main content

Advertisement

Log in

Cardiovascular Complications Associated with Contemporary Lung Cancer Treatments

  • Cardio-oncology (MG Fradley, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Lung cancer is the most common form of cancer in humans and the leading cause of cancer-related death worldwide. Traditionally, lung cancer has been diagnosed as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). However, recent developments in molecular pathology have revolutionized the diagnosis and treatment of the disease, thus improving patient prognosis and increasing the number of survivors. In advanced NSCLC cases, molecularly targeted drugs for patients with positive driver gene mutation/rearrangement, and immune checkpoint inhibitors for those with a positive biomarker, have changed the standard of care. SCLC is a highly malignant entity. In addition to the chemotherapy and radiotherapy, immune checkpoint inhibitors have recently provided some hope for extended-stage SCLC. Smoking cessation is related to decreased morbidity. However, early metastasis remains a significant challenge. Recently, cancer therapy–related cardiovascular disease (CTRCD) has emerged as diverse pathophysiology, including fulminant myocarditis, fatal arrhythmia, pericarditis, hypertension, and thrombosis, that emerged with modern lung cancer therapies. Cardio-oncology is a new interdisciplinary collaboration to develop methodologies to manage cardiovascular risk factors and CTRCDs with the common goal of minimizing unnecessary interruption of cancer treatment and maximizing outcomes of lung cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311. https://doi.org/10.1016/s0140-6736(16)30958-8.

    Article  CAS  PubMed  Google Scholar 

  3. Jackman DM, Johnson BE. Small-cell lung cancer. Lancet. 2005;366(9494):1385–96. https://doi.org/10.1016/s0140-6736(05)67569-1.

    Article  CAS  PubMed  Google Scholar 

  4. van Meerbeeck JP, Fennell DA, De Ruysscher DKM. Small-cell lung cancer. Lancet. 2011;378(9804):1741–55. https://doi.org/10.1016/s0140-6736(11)60165-7.

    Article  PubMed  Google Scholar 

  5. Ihde DC. Chemotherapy of lung cancer. N Engl J Med. 1992;327(20):1434–41. https://doi.org/10.1056/NEJM199211123272006.

    Article  CAS  PubMed  Google Scholar 

  6. • Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322(8):764–74. https://doi.org/10.1001/jama.2019.11058 An updated review of the treatment of NSCLC.

    Article  CAS  PubMed  Google Scholar 

  7. • Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–9. https://doi.org/10.1056/NEJMoa1916623An epidemiological study on lung cancer prevention, diagnosis, and treatment overlooking the past, present, and future.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet. 2000;355(9202):479–85. https://doi.org/10.1016/s0140-6736(00)82038-3.

    Article  CAS  PubMed  Google Scholar 

  9. Reck M, Heigener DF, Mok T, Soria J-C, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382(9893):709–19. https://doi.org/10.1016/s0140-6736(13)61502-0.

    Article  CAS  PubMed  Google Scholar 

  10. Hirsch FR, Suda K, Wiens J, Bunn PA. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016;388(10048):1012–24. https://doi.org/10.1016/s0140-6736(16)31473-8.

    Article  PubMed  Google Scholar 

  11. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377(9):849–61. https://doi.org/10.1056/NEJMra1703413.

    Article  CAS  PubMed  Google Scholar 

  12. Doroshow DB, Herbst RS. Treatment of advanced non-small cell lung cancer in 2018. JAMA Oncol. 2018;4(4):569–70. https://doi.org/10.1001/jamaoncol.2017.5190.

    Article  PubMed  Google Scholar 

  13. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  14. Carney DN. Biology of small-cell lung cancer. Lancet. 1992;339(8797):843–6. https://doi.org/10.1016/0140-6736(92)90286-c.

    Article  CAS  PubMed  Google Scholar 

  15. • Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol. 2020;17(5):300–12. https://doi.org/10.1038/s41571-019-0316-z An up-to-date review on the history of SCLC treatment including the challenges and opportunities for immune checkpoint therapies.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008–20. https://doi.org/10.1161/CIRCRESAHA.115.303633.

    Article  CAS  PubMed  Google Scholar 

  17. • Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020;17(8):474–502. https://doi.org/10.1038/s41569-020-0348-1 A comprehensive review of the cardiotoxicity associated with cancer therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Herrmann J. Vascular toxic effects of cancer therapies. Nat Rev Cardiol. 2020;17(8):503–22. https://doi.org/10.1038/s41569-020-0347-2An in-depth review of the vascular toxicity associated with cancer therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perez-Callejo D, Torrente M, Brenes MA, Nunez B, Provencio M. Lung cancer as a cardiotoxic state: a review. Med Oncol. 2017;34(9):159. https://doi.org/10.1007/s12032-017-1012-4.

    Article  CAS  PubMed  Google Scholar 

  20. Zaborowska-Szmit M, Krzakowski M, Kowalski DM, Szmit S. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5). https://doi.org/10.3390/jcm9051268.

  21. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  22. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833–42. https://doi.org/10.1016/S0140-6736(17)32247-X.

    Article  CAS  PubMed  Google Scholar 

  23. Kravchenko J, Berry M, Arbeev K, Lyerly HK, Yashin A, Akushevich I. Cardiovascular comorbidities and survival of lung cancer patients: Medicare data based analysis. Lung Cancer. 2015;88(1):85–93. https://doi.org/10.1016/j.lungcan.2015.01.006.

    Article  PubMed  Google Scholar 

  24. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42. https://doi.org/10.1038/nm.2919.

    Article  CAS  PubMed  Google Scholar 

  25. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. https://doi.org/10.1016/j.jacc.2009.03.095.

    Article  CAS  PubMed  Google Scholar 

  26. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825.

    Article  CAS  PubMed  Google Scholar 

  27. Lee Chuy K, Nahhas O, Dominic P, Lopez C, Tonorezos E, Sidlow R, et al. Cardiovascular complications associated with mediastinal radiation. Curr Treat Options Cardiovasc Med. 2019;21(7):31. https://doi.org/10.1007/s11936-019-0737-0.

    Article  PubMed  Google Scholar 

  28. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67. https://doi.org/10.1056/NEJMra1100265.

    Article  CAS  PubMed  Google Scholar 

  29. Guha A, Armanious M, Fradley MG. Update on cardio-oncology: novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc Med. 2019;29(1):29–39. https://doi.org/10.1016/j.tcm.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55. https://doi.org/10.1056/NEJMoa1609214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391(10124):933. https://doi.org/10.1016/S0140-6736(18)30533-6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •• Shelburne N, Simonds NI, Adhikari B, Alley M, Desvigne-Nickens P, Dimond E, et al. Changing hearts and minds: improving outcomes in cancer treatment-related cardiotoxicity. Curr Oncol Rep. 2019;21(1):9. https://doi.org/10.1007/s11912-019-0751-0 Five years after the landmark workshop at the NIH, this white paper summarizes progress and challenges for the future in the emerging interdisciplinary field of cardio-oncology.

    Article  PubMed  Google Scholar 

  33. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66. https://doi.org/10.1093/annonc/mds293.

    Article  PubMed  Google Scholar 

  34. •• Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–90. https://doi.org/10.1016/j.annonc.2019.10.023 This is one of the major evidence-based cardio-oncology practice guidelines with the common goal of minimizing cancer treatment interruptions and maximizing cancer patient outcomes.

    Article  CAS  PubMed  Google Scholar 

  35. Lancellotti P, Suter TM, Lopez-Fernandez T, Galderisi M, Lyon AR, Van der Meer P, et al. Cardio-oncology services: rationale, organization, and implementation. Eur Heart J. 2019;40(22):1756–63. https://doi.org/10.1093/eurheartj/ehy453.

    Article  PubMed  Google Scholar 

  36. Dang CT, Yu AF, Jones LW, Liu J, Steingart RM, Argolo DF, et al. Cardiac surveillance guidelines for trastuzumab-containing therapy in early-stage breast cancer: getting to the heart of the matter. J Clin Oncol. 2016;34(10):1030–3. https://doi.org/10.1200/JCO.2015.64.5515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abe J, Martin JF, Yeh ET. The future of onco-cardiology: we are not just “side effect hunters”. Circ Res. 2016;119(8):896–9. https://doi.org/10.1161/CIRCRESAHA.116.309573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Colombo A, Meroni CA, Cipolla CM, Cardinale D. Managing cardiotoxicity of chemotherapy. Curr Treat Options Cardiovasc Med. 2013;15(4):410–24. https://doi.org/10.1007/s11936-013-0248-3.

    Article  PubMed  Google Scholar 

  39. Zhang L, Jones-O’Connor M, Awadalla M, Zlotoff DA, Thavendiranathan P, Groarke JD, et al. Cardiotoxicity of immune checkpoint inhibitors. Curr Treat Options Cardiovasc Med. 2019;21(7):32. https://doi.org/10.1007/s11936-019-0731-6.

    Article  PubMed  Google Scholar 

  40. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911. https://doi.org/10.1200/JCO.2016.70.5400.

    Article  PubMed  Google Scholar 

  41. Gilchrist SC, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation. 2019;139(21):e997–e1012. https://doi.org/10.1161/CIR.0000000000000679.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sase K, Kida K, Furukawa Y. Cardio-Oncology rehabilitation-challenges and opportunities to improve cardiovascular outcomes in cancer patients and survivors. J Cardiol. 2020;76(6):559–67. https://doi.org/10.1016/j.jjcc.2020.07.014.

    Article  PubMed  Google Scholar 

  43. Sridhar SS, Seymour L, Shepherd FA. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 2003;4(7):397–406. https://doi.org/10.1016/s1470-2045(03)01137-9.

    Article  CAS  PubMed  Google Scholar 

  44. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  45. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. https://doi.org/10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  46. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80. https://doi.org/10.1056/NEJMra0802714.

    Article  CAS  PubMed  Google Scholar 

  47. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378(9804):1727–40. https://doi.org/10.1016/s0140-6736(10)62101-0.

    Article  PubMed  Google Scholar 

  48. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80. https://doi.org/10.1016/s1470-2045(10)70087-5.

    Article  CAS  PubMed  Google Scholar 

  49. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. https://doi.org/10.1056/NEJMoa0909530.

    Article  CAS  PubMed  Google Scholar 

  50. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40. https://doi.org/10.1056/NEJMoa1612674.

    Article  CAS  PubMed  Google Scholar 

  51. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25. https://doi.org/10.1056/NEJMoa1713137.

    Article  CAS  PubMed  Google Scholar 

  52. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6. https://doi.org/10.1200/JCO.2006.07.9525.

    Article  CAS  PubMed  Google Scholar 

  53. Herbst RS, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet. 2011;377(9780):1846–54. https://doi.org/10.1016/s0140-6736(11)60545-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanazawa S, Yamaguchi K, Kinoshita Y, Muramatsu M, Komiyama Y, Nomura S. Gefitinib affects functions of platelets and blood vessels via changes in prostanoids balance. Clin Appl Thromb Hemost. 2005;11(4):429–34. https://doi.org/10.1177/107602960501100409.

    Article  CAS  PubMed  Google Scholar 

  55. Yamaguchi K, Kanazawa S, Kinoshita Y, Muramatsu M, Nomura S. Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb. 2005;34(1):48–50. https://doi.org/10.1159/000088548.

    Article  CAS  PubMed  Google Scholar 

  56. Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 2012;343(2):342–50. https://doi.org/10.1124/jpet.112.197756.

    Article  CAS  PubMed  Google Scholar 

  57. Ewer MS, Patel K, O’Brien D, Lorence RM. Cardiac safety of afatinib: a review of data from clinical trials. Cardio-Oncology. 2015;1(1). https://doi.org/10.1186/s40959-015-0006-7.

  58. Ramalingam SS, Jänne PA, Mok T, O’Byrne K, Boyer MJ, Von Pawel J, et al. Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(12):1369–78. https://doi.org/10.1016/s1470-2045(14)70452-8.

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y-L, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(11):1454–66. https://doi.org/10.1016/s1470-2045(17)30608-3.

    Article  CAS  PubMed  Google Scholar 

  60. Nishio M, Kato T, Niho S, Yamamoto N, Takahashi T, Nogami N, et al. Safety and efficacy of first-line dacomitinib in Japanese patients with advanced non-small cell lung cancer. Cancer Sci. 2020;111(5):1724–38. https://doi.org/10.1111/cas.14384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-induced cardiotoxicity. JACC: CardioOncol. 2019;1(2):172–8. https://doi.org/10.1016/j.jaccao.2019.10.006.

    Article  Google Scholar 

  62. Yi L, Fan J, Qian R, Luo P, Zhang J. Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC: a meta-analysis. Int J Cancer. 2019;145(1):284–94. https://doi.org/10.1002/ijc.32097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watanabe H, Ichihara E, Kano H, Ninomiya K, Tanimoto M, Kiura K. Congestive heart failure during osimertinib treatment for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Intern Med. 2017;56(16):2195–7. https://doi.org/10.2169/internalmedicine.8344-16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chaft JE, Oxnard GR, Sima CS, Kris MG, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res. 2011;17(19):6298–303. https://doi.org/10.1158/1078-0432.CCR-11-1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schiefer M, Hendriks LEL, Dinh T, Lalji U, Dingemans AC. Current perspective: osimertinib-induced QT prolongation: new drugs with new side-effects need careful patient monitoring. Eur J Cancer. 2018;91:92–8. https://doi.org/10.1016/j.ejca.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  66. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  67. Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99(12):2349–55. https://doi.org/10.1111/j.1349-7006.2008.00972.x.

    Article  CAS  PubMed  Google Scholar 

  68. Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71. https://doi.org/10.1158/1078-0432.CCR-09-2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zer A, Moskovitz M, Hwang DM, Hershko-Klement A, Fridel L, Korpanty GJ, et al. ALK-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism. Clin Lung Cancer. 2017;18(2):156–61. https://doi.org/10.1016/j.cllc.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  70. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703. https://doi.org/10.1056/NEJMoa1006448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. https://doi.org/10.1056/NEJMoa1408440.

    Article  CAS  PubMed  Google Scholar 

  72. Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–42. https://doi.org/10.1016/s1470-2045(15)00488-x.

    Article  CAS  PubMed  Google Scholar 

  73. Shaw AT, Kim TM, Crinò L, Gridelli C, Kiura K, Liu G, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–86. https://doi.org/10.1016/s1470-2045(17)30339-x.

    Article  CAS  PubMed  Google Scholar 

  74. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379(21):2027–39. https://doi.org/10.1056/NEJMoa1810171.

    Article  CAS  PubMed  Google Scholar 

  75. Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-line lorlatinib or crizotinib in advanced alk-positive lung cancer. N Engl J Med. 2020;383(21):2018–29. https://doi.org/10.1056/NEJMoa2027187.

    Article  CAS  PubMed  Google Scholar 

  76. Tartarone A, Gallucci G, Lazzari C, Lerose R, Lombardi L, Aieta M. Crizotinib-induced cardiotoxicity: the importance of a proactive monitoring and management. Future Oncol. 2015;11(14):2043–8. https://doi.org/10.2217/fon.15.47.

    Article  CAS  PubMed  Google Scholar 

  77. Oyakawa T, Muraoka N, Iida K, Kusuhara M, Kawamura T, Naito T, et al. Crizotinib-induced simultaneous multiple cardiac toxicities. Investig New Drugs. 2018;36(5):949–51. https://doi.org/10.1007/s10637-018-0605-x.

    Article  CAS  Google Scholar 

  78. Gold KA. ROS1-targeting the one percent in lung cancer. N Engl J Med. 2014;371(21):2030–1. https://doi.org/10.1056/NEJMe1411319.

    Article  PubMed  Google Scholar 

  79. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):261–70. https://doi.org/10.1016/s1470-2045(19)30690-4.

    Article  CAS  PubMed  Google Scholar 

  81. Sartore-Bianchi A, Pizzutilo EG, Marrapese G, Tosi F, Cerea G, Siena S. Entrectinib for the treatment of metastatic NSCLC: safety and efficacy. Expert Rev Anticancer Ther. 2020;20(5):333–41. https://doi.org/10.1080/14737140.2020.1747439.

    Article  CAS  PubMed  Google Scholar 

  82. Rosell R, Karachaliou N. BRAFV600E and BRAF-inactivating mutations in NSCLC. Lancet Oncol. 2017;18(10):1286–7. https://doi.org/10.1016/s1470-2045(17)30678-2.

    Article  PubMed  Google Scholar 

  83. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16. https://doi.org/10.1016/s1470-2045(17)30679-4.

    Article  CAS  PubMed  Google Scholar 

  84. Mincu RI, Mahabadi AA, Michel L, Mrotzek SM, Schadendorf D, Rassaf T, et al. Cardiovascular adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e198890. https://doi.org/10.1001/jamanetworkopen.2019.8890.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bronte E, Bronte G, Novo G, Bronte F, Bavetta MG, Lo Re G, et al. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget. 2015;6(34):35589–601. https://doi.org/10.18632/oncotarget.5853.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Larkin J, Del Vecchio M, Ascierto PA, Krajsova I, Schachter J, Neyns B, et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: an open-label, multicentre, safety study. Lancet Oncol. 2014;15(4):436–44. https://doi.org/10.1016/S1470-2045(14)70051-8.

    Article  CAS  PubMed  Google Scholar 

  87. Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, et al. FDA approval summary: dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist. 2018;23(6):740–5. https://doi.org/10.1634/theoncologist.2017-0642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lyon AR, Dent S, Stanway S, Earl H, Brezden-Masley C, Cohen-Solal A, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60. https://doi.org/10.1002/ejhf.1920.

    Article  PubMed  Google Scholar 

  89. Ricciuti B, Brambilla M, Metro G, Baglivo S, Matocci R, Pirro M, et al. Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med Oncol. 2017;34(6):105. https://doi.org/10.1007/s12032-017-0967-5.

    Article  CAS  PubMed  Google Scholar 

  90. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9. https://doi.org/10.1056/NEJMoa1714448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731–47. https://doi.org/10.1038/s41571-018-0113-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531–40. https://doi.org/10.1016/s1470-2045(19)30856-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Totzeck M, Mincu RI, Rassaf T. Cardiovascular adverse events in patients with cancer treated with bevacizumab: a meta-analysis of more than 20 000 patients. J Am Heart Assoc. 2017;6(8). https://doi.org/10.1161/JAHA.117.006278.

  94. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50. https://doi.org/10.1056/NEJMoa061884.

    Article  CAS  PubMed  Google Scholar 

  95. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12(6):713–8. https://doi.org/10.1634/theoncologist.12-6-713.

    Article  CAS  PubMed  Google Scholar 

  96. Rosell R, Dafni U, Felip E, Curioni-Fontecedro A, Gautschi O, Peters S, et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir Med. 2017;5(5):435–44. https://doi.org/10.1016/s2213-2600(17)30129-7.

    Article  CAS  PubMed  Google Scholar 

  97. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301. https://doi.org/10.1056/NEJMoa1716948.

    Article  CAS  PubMed  Google Scholar 

  98. Mukai M, Komori K, Oka T. Mechanism and management of cancer chemotherapy-induced atherosclerosis. J Atheroscler Thromb. 2018;25(10):994–1002. https://doi.org/10.5551/jat.RV17027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakagawa K, Garon EB, Seto T, Nishio M, Ponce Aix S, Paz-Ares L, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(12):1655–69. https://doi.org/10.1016/s1470-2045(19)30634-5.

    Article  CAS  PubMed  Google Scholar 

  100. Reck M, Kaiser R, Mellemgaard A, Douillard J-Y, Orlov S, Krzakowski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15(2):143–55. https://doi.org/10.1016/s1470-2045(13)70586-2.

    Article  CAS  PubMed  Google Scholar 

  101. Uruga H, Mino-Kenudson M. Predictive biomarkers for response to immune checkpoint inhibitors in lung cancer: PD-L1 and beyond. Virchows Arch. 2021. https://doi.org/10.1007/s00428-021-03030-8.

  102. Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–9. https://doi.org/10.1056/NEJMoa1809064.

    Article  CAS  PubMed  Google Scholar 

  103. Wang Y, Zhou S, Yang F, Qi X, Wang X, Guan X, et al. Treatment-Related Adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008–19. https://doi.org/10.1001/jamaoncol.2019.0393.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80. https://doi.org/10.1038/s41571-019-0218-0.

    Article  CAS  PubMed  Google Scholar 

  105. Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R, Tocchetti CG, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res. 2019;115(5):854–68. https://doi.org/10.1093/cvr/cvz026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68. https://doi.org/10.1200/JCO.2017.77.6385.

    Article  CAS  PubMed  Google Scholar 

  107. Bonaca MP, Olenchock BA, Salem JE, Wiviott SD, Ederhy S, Cohen A, et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation. 2019;140(2):80–91. https://doi.org/10.1161/CIRCULATIONAHA.118.034497.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630–7. https://doi.org/10.1016/s1470-2045(15)70168-3.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ball D, Mai GT, Vinod S, Babington S, Ruben J, Kron T, et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol. 2019;20(4):494–503. https://doi.org/10.1016/s1470-2045(18)30896-9.

    Article  PubMed  Google Scholar 

  110. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–50. https://doi.org/10.1056/NEJMoa1809697.

    Article  CAS  PubMed  Google Scholar 

  111. Simone CB 2nd. New era in radiation oncology for lung cancer: recognizing the importance of cardiac irradiation. J Clin Oncol. 2017;35(13):1381–3. https://doi.org/10.1200/JCO.2016.71.5581.

    Article  PubMed  Google Scholar 

  112. Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94. https://doi.org/10.1200/JCO.2016.70.0229.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–87. https://doi.org/10.1016/j.jacc.2019.03.500.

    Article  PubMed  Google Scholar 

  114. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Increased perioperative N-terminal pro-B-type natriuretic peptide levels predict atrial fibrillation after thoracic surgery for lung cancer. Circulation. 2007;115(11):1339–44. https://doi.org/10.1161/circulationaha.106.647008.

    Article  CAS  PubMed  Google Scholar 

  115. Salla E, Dimakakos EP, Tsagkouli S, Giozos I, Charpidou A, Kainis E, et al. Venous thromboembolism in patients diagnosed with lung cancer. Angiology. 2016;67(8):709–24. https://doi.org/10.1177/0003319715614945.

    Article  CAS  PubMed  Google Scholar 

  116. Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2020;38(5):496–520. https://doi.org/10.1200/jco.19.01461.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by a JSPS/MEXT (KAKENHI 18K12134 and 20K08427, K.S.), MHLW (20FA1801 and 20KC2009, K.S.), AMED (20ck0106633h0001, K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Sase MD, PhD.

Ethics declarations

Conflict of Interest

Kazuhiro Sase has received lecture fees from Daiichi Sankyo, Shionogi, Astellas, Novartis, Pfizer, and Bristol-Myers Squibb, outside the submitted work. Yasuhito Fujisaka has received lecture fees from AstraZeneca; Novartis; Chugai Pharmaceutical Co.; Ono Pharmaceutical; Taiho Pharmaceutical; MSD; Pfizer; Eli Lilly; Boehringer Ingelheim; Bristol-Myers Squibb; and Merck, outside the submitted work. Masaaki Shoji declares that he has no conflict of interest. Mikio Mukai has received lecture fees from Bayer, Daiichi Sankyo, Bristol Myers Squibb, and Pfizer, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sase, K., Fujisaka, Y., Shoji, M. et al. Cardiovascular Complications Associated with Contemporary Lung Cancer Treatments. Curr. Treat. Options in Oncol. 22, 71 (2021). https://doi.org/10.1007/s11864-021-00869-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00869-6

Keywords

Navigation