Opinion statement
Screening for activating driver gene alterations at the time of diagnosis is the standard of care for advanced non-small cell lung cancer (NSCLC). Activating RET fusions are identified in approximately 1–2% of NSCLCs and have emerged as a targetable driver alteration. Selpercatinib and pralsetinib are RET-selective tyrosine kinase inhibitors (TKIs) with encouraging efficacy, intracranial activity, and tolerability that we recommend as first-line therapy. As with use of TKIs in other oncogene-addicted NSCLCs, development of acquired resistance is pervasive and should be specifically delineated through use of repeat tissue biopsy with genetic profiling at the time of disease progression. If an actionable resistance mechanism emerges for which there is a candidate targeted therapy, combination inhibition should be considered. Alternatively, or in the absence of such findings, platinum doublet chemotherapy or particularly platinum-pemetrexed therapy with or without bevacizumab demonstrates a moderate effect.
We would not recommend the routine use of nonselective multi-targeted TKIs such as cabozantinib and vandetanib, which have modest activity but limited tolerability due to predictable off-target effects. Single-agent immunotherapy has minimal activity in RET fusion-positive NSCLC. The role of combination chemotherapy and immunotherapy requires further study but may be considered, particularly in the presence of an activating KRAS alteration. While further development of novel RET-selective TKIs may address common RET-specific resistance mutations, they will not have activity against off-target, RET-independent resistance mechanisms. This again highlights the importance of serial biopsy and next-generation sequencing for the rational choice of sequential therapy in RET fusion-positive NSCLC.
Similar content being viewed by others
Notes
For cost analyses, average wholesale prices as reported in the IBM Micromedex Red Book as of January 2021 are cited [30].
References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Shaw AT, Riely GJ, Bang Y-J, Kim D-W, Camidge DR, Solomon BJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019;30:1121–6. https://doi.org/10.1093/annonc/mdz131.
Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-Line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77. https://doi.org/10.1056/NEJMoa1408440.
Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377:829–38. https://doi.org/10.1056/NEJMoa1704795.
Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med. 2017;376:629–40. https://doi.org/10.1056/NEJMoa1612674.
Zhou C, Wu Y-L, Chen G, Feng J, Liu X-Q, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42. https://doi.org/10.1016/S1470-2045(11)70184-X.
Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93. https://doi.org/10.1016/S1470-2045(16)30146-2.
Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10:1670–4. https://doi.org/10.1097/01.JTO.0000473485.38553.f0.
Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UK, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378:731–9. https://doi.org/10.1056/NEJMoa1714448.
Weinstein IB. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002;297:63–4. https://doi.org/10.1126/science.1073096.
Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med. 2011;3:623–36. https://doi.org/10.1002/emmm.201100176.
Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42:581–8. https://doi.org/10.1016/0092-8674(85)90115-1.
Ceccherini I, Bocciardi R, Luo Y, Pasini B, Hofstra R, Takahashi M, et al. Exon structure and flanking intronic sequences of the human RET proto-oncogene. Biochem Biophys Res Commun. 1993;196:1288–95. https://doi.org/10.1006/bbrc.1993.2392.
Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14:173–86. https://doi.org/10.1038/nrc3680.
Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, et al. Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 2004;279:14213–24. https://doi.org/10.1074/jbc.M312600200.
Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001;12:361–73. https://doi.org/10.1016/s1359-6101(01)00012-0.
Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23:1988–97. https://doi.org/10.1158/1078-0432.CCR-16-1679.
Moura MM, Cavaco BM, Pinto AE, Domingues R, Santos JR, Cid MO, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009;100:1777–83. https://doi.org/10.1038/sj.bjc.6605056.
Marsh DJ, Mulligan LM, Eng C. RET proto-oncogene mutations in multiple endocrine neoplasia type 2 and medullary thyroid carcinoma. Horm Res. 1997;47:168–78. https://doi.org/10.1159/000185461.
Pietrantonio F, Di Nicolantonio F, Schrock AB, Lee J, Morano F, Fuca G, et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann Oncol. 2018;29:1394–401. https://doi.org/10.1093/annonc/mdy090.
Santos C, Sanz-Pamplona R, Salazar R. RET-fusions: a novel paradigm in colorectal cancer. Ann Oncol. 2018;29:1340–3. https://doi.org/10.1093/annonc/mdy132.
Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89:1517–22. https://doi.org/10.1172/JCI115743.
Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, Williams K, et al. RET rearrangements are actionable alterations in breast cancer. Nat Commun. 2018;9:4821. https://doi.org/10.1038/s41467-018-07341-4.
Lipson D, Capelletti M, Yelensky R, Ottto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4. https://doi.org/10.1038/nm.2673.
Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30:4352–9. https://doi.org/10.1200/JCO.2012.44.1477.
Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81. https://doi.org/10.1038/nm.2658.
Platt A, Morten J, Ji Q, Elvin P, Womack C, Su X, et al. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized phase III studies. BMC Cancer. 2015;15:171. https://doi.org/10.1186/s12885-015-1146-8.
Ferrara R, Auger N, Auclin E, Besse B. Clinical and translational implications of RET rearrangements in non–small cell lung cancer. J Thorac Oncol. 2018;13:27–45. https://doi.org/10.1016/j.jtho.2017.10.021.
Gautschi O, Milia J, Filleron T, Wolf J, Carbone DP, Owen D, et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J Clin Oncol. 2017;35:1403–10. https://doi.org/10.1200/JCO.2016.70.9352.
Ju YS, Lee W-C, Shin J-Y, Lee S, Bleazard T, Won J-K, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–45. https://doi.org/10.1101/gr.133645.111.
IBM Micromedex RED Book. IBM Watson Health, an IBM Company. https://www.ibm.com/us-en/marketplace/micromedex-red-book 2017. Accessed 30 Jan 2021.
Brandhuber B, Haas J, Tuch B, Ebata K, Bouhana K, McFaddin E, et al. The development of a potent, KDR/VEGFR2-sparing RET kinase inhibitor for treating patients with RET-dependent cancers. Eur J Cancer. 2016;69:S144. https://doi.org/10.1016/S0959-8049(16)33028-3.
Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29:1869–76. https://doi.org/10.1093/annonc/mdy137.
•• Drilon A, Oxnard GR, Tan DS, Loong HHF, Johnson M, Gainor J, et al. Efficacy of selpercatinib in RET fusion-positive non–small-cell lung cancer. N Engl J Med. 2020;383:813–24. https://doi.org/10.1056/NEJMoa2005653In a phase 1/2 trial, patients with advanced RET fusion-positive NSCLC treated with the RET-selective TKI selpercatinib had marked, durable responses and encouraging tolerability.
Subbiah V, Gainor JF, Oxnard GR, Tan DS, Owen DH, Cho BC, et al. Intracranial activity of selpercatinib (LOXO-292) in RET fusion-positive non-small cell lung cancer (NSCLC) patients on the LIBRETTO-001 trial. J Clin Oncol. 2020;38(Suppl 15):9516. https://doi.org/10.1200/JCO.2020.38.15_suppl.9516.
Oxnard GR, Drilon AE, Shah MH, Wirth LJ, Bauer TM, Velcheti V, et al. Detection and clearance of RET variants in plasma cell free DNA (cfDNA) from patients (pts) treated with LOXO-292. J Clin Oncol. 2018;36(Suppl 15):9048. https://doi.org/10.1200/JCO.2018.36.15_suppl.9048.
Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single centre, phase 2, single-arm trial. Lancet Oncol. 2016;17:1653–60. https://doi.org/10.1016/S1470-2045(16)30562-9.
Lee S-H, Lee J-K, Ahn M-J, Kim D-W, Sun J-M, Keam B, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28:292–7. https://doi.org/10.1093/annonc/mdw559.
Yoh K, Seto T, Satouchi M, Nishio M, Yamamoto N, Murakami H, et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med 2017;5:42–50. doi:https://doi.org/10.1016/S2213-2600(16)30322-8.
Hida T, Velcheti V, Reckamp KL, Nokihara H, Sachdev P, Kubota T, et al. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer. 2019;138:124–30. https://doi.org/10.1016/j.lungcan.2019.09.011.
FDA approves selpercatinib; pralsetinib may soon follow. Cancer Discov. 2020;10:OF1. https://doi.org/10.1158/2159-8290.CD-NB2020-052.
McCoach CE, Tan DSW, Besse B, Goto K, Zhu VW, Rolfo CD, et al. Hypersensitivity reactions to selpercatinib in RET fusion+ non-small cell lung cancer (NSCLC) patients (pts) following immune checkpoint inhibition (CPI). Ann Oncol. 2020;31(Suppl 4):S835–6. https://doi.org/10.1016/j.annonc.2020.08.1605.
Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018;8:836–49. https://doi.org/10.1158/2159-8290.CD-18-0338.
Evans EK, Hu W, Cao F, Hoeflich K, Dorsch M. Pralsetinib (BLU-667) demonstrates robust activity in RET-fusion-driven intracranial tumor models. In: The 2019 World Conference on Lung Cancer. 2019;Abstract P2.03-44.
•• Gainor JF, Curigliano G, Kim D-W, Lee DH, Besse B, Baik CS, et al. ET fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38(Suppl 15):9515. https://doi.org/10.1200/JCO.2020.38.15_suppl.9515Phase I/II trial demonstrating potent, durable clinical activity in patients with RET fusion-positive NSCLC treated with the RET-selective TKI pralsetinib.
Gainor JF, Lee DH, Curigliano G, Doebele RC, Kim D-W, Baik CS, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2019;37(Suppl 15):9008. https://doi.org/10.1200/JCO.2019.37.15_suppl.9008.
Lee DH, Subbiah V, Gainor JF, Taylor MH, Zhu VW, Doebele RC, et al. Treatment with pralsetinib (formerly BLU-667), a potent and selective RET inhibitor, provides rapid clearance of ctDNA in patients with RET-altered non-small cell lung cancer (NSCLC) and medullary thyroid cancer (MTC). Ann Oncol. 2019;30(Suppl 9:ix122). https://doi.org/10.1093/annonc/mdz431.
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308. https://doi.org/10.1158/1535-7163.MCT-11-0264.
Drilon A, Somwar R, Wagner JP, Vellore NA, Eide CA, Zabriskie MS, et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res. 2016;22:2351–8. https://doi.org/10.1158/1078-0432.CCR-15-2013.
Huang Q, Schneeberger VE, Luetteke N, Jin C, Afzal R, Budzevich MM, et al. Preclinical modeling of KIF5B-RET fusion lung adenocarcinoma. Mol Cancer Ther. 2016;15:2521–9. https://doi.org/10.1158/1535-7163.MCT-16-0258.
Drilon A, Lin JJ, Filleron T, Ni A, Milia J, Bergagnini I, et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J Thorac Oncol. 2018;13:1595–601. https://doi.org/10.1016/j.jtho.2018.07.004.
Morabito A, Piccirillo MC, Falasconi F, De Feo G, Del Giudice A, Bryce J, et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist. 2009;14:378–90. https://doi.org/10.1634/theoncologist.2008-0261.
Herbst RS, Sun Y, Eberhardt WEE, Germopre P, Saijo N, Zhou C, et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2010;11:619–26. https://doi.org/10.1016/S1470-2045(10)70132-7.
Natale RB, Thongprasert S, Greco FA, Thomas M, Tsai C-M, Sunpaweravong P, et al. Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:1059–66. https://doi.org/10.1200/JCO.2010.28.5981.
De Boer RH, Arrieta Ó, Yang C-H, Gottfried M, Chan V, Raats J, et al. Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2011;29:1067–74. https://doi.org/10.1200/JCO.2010.29.5717.
Lee JS, Hirsh V, Park K, Qin S, Blajman CR, Perng R-P, et al. Vandetanib versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol. 2012;30:1114–21. https://doi.org/10.1200/JCO.2011.36.1709.
Zhou C, Lu Y, Kim S-W, Reungwetwatttana T, Zhou J, Zhang Y, et al. Primary results of ALESIA: phase III, randomised open-label study of alectinib (ALC) vs crizotinib (CRZ) in Asian patients (pts) with treatment-naïve ALK+ advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2018;29(Suppl 9:ix174). https://doi.org/10.1093/annonc/mdy483.001.
Lin JJ, Kennedy E, Sequist LV, Brastianos PK, Goodwin KE, Stevens S, et al. Clinical activity of alectinib in advanced RET-rearranged non-small cell lung cancer. J Thorac Oncol. 2016;11:2027–32. https://doi.org/10.1016/j.jtho.2016.08.126.
Ribeiro MFSA, Alessi JVM, Oliveira LJC, Gongora ABL, Sacardo KP, Zucchetti BM, et al. Alectinib activity in chemotherapy-refractory metastatic RET-rearranged non-small cell lung carcinomas: a case series. Lung Cancer. 2020;139:9–12. https://doi.org/10.1016/j.lungcan.2019.10.020.
Takeuchi S, Murayama T, Yoshimura K, Kawakami T, Takahara S, Imai Y, et al. Phase I/II study of alectinib in lung cancer with RET fusion gene: study protocol. J Med Investig. 2017;64:317–20. https://doi.org/10.2152/jmi.64.317.
Gainor JF, Chi AS, Logan J, Hu R, Oh KS, Brastianos PK, et al. Alectinib dose escalation reinduces central nervous system responses in patients with anaplastic lymphoma kinase-positive non-small cell lung cancer relapsing on standard dose alectinib. J Thorac Oncol. 2016;11:256–60. https://doi.org/10.1016/j.jtho.2015.10.010.
Peled N, Ponce S, Alatorre-Alexander JA, Kinkolykh A, Vicuna BD, Mathiesen M, et al. Higher dose alectinib for advanced RET+ NSCLC: results from the RET+ cohort of the blood first assay screening trial (BFAST). In: The 2020 World Conference on Lung Cancer. 2021;Abstract P87.01.
Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390:29–39. https://doi.org/10.1016/S0140-6736(17)30565-2.
Drilon A, Fu S, Patel MR, Fakih M, Wang D, Olszanski AJ, et al. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov. 2019;9:384–95. https://doi.org/10.1158/2159-8290.CD-18-0839.
Horiike A, Takeuchi K, Uenami T, Kawano Y, Tanimoto A, Kaburaki K, et al. Sorafenib treatment for patients with RET fusion-positive non-small cell lung cancer. Lung Cancer. 2016;93:43–6. https://doi.org/10.1016/j.lungcan.2015.12.011.
Gainor JF, Gadgeel S, Ou SI, Yeap B, Otterson GA, Shaw AT. A phase II study of the multikinase inhibitor ponatinib in patients with advanced. RET-rearranged NSCLC JTO Clin Res Rep. 2020;1:100045. https://doi.org/10.1016/j.jtocrr.2020.100045.
Lin C, Wang S, Xie W, Zheng R, Gan Y, Chang J. Apatinib inhibits cellular invasion and migration by fusion kinase KIF5B-RET via suppressing RET/Src signaling pathway. Oncotarget. 2016;7:59236–44. https://doi.org/10.18632/oncotarget.10985.
Kang CW, Jang KW, Sohn J, Kim S-M, Pyo K-H, Kim H, et al. Antitumor activity and acquired resistance mechanism of dovitinib (TKI258) in RET-rearranged lung adenocarcinoma. Mol Cancer Ther. 2015;14:2238–48. https://doi.org/10.1158/1535-7163.MCT-15-0350.
Plenker D, Diedel M, Brägelmann J, Dammert MA, Chauhan R, Knowles PP, et al. Mechanistic insight into RET kinase inhibitors targeting the DFG-out conformation in RET-rearranged cancer. Sci Transl Med. 2017;9:eaah6144. https://doi.org/10.1126/scitranslmed.aah6144.
Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51. https://doi.org/10.1200/JCO.2007.15.0375.
Drilon A, Bergagnini I, Delasos L, Sabari J, Woo KM, Plodkowski A, et al. Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Ann Oncol. 2016;27:1286–91. https://doi.org/10.1093/annonc/mdw163.
Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer – a meta-analysis. J Thorac Oncol. 2017;12:403–7. https://doi.org/10.1016/j.jtho.2016.10.007.
Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22:4585–93. https://doi.org/10.1158/1078-0432.CCR-15-3101.
Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.
Offin M, Guo R, Wu SL, Sabari J, Land JD, Ni A, et al. Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. JCO Precis Oncol. 2019;3. https://doi.org/10.1200/PO.18.00386.
• Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30:1321–8. https://doi.org/10.1093/annonc/mdz167Multinational registry study characterizing the effect of ICIs in NSCLC with targetable driver alterations, demonstrating minimal response to immunotherapy for patients with RET fusion-positive NSCLC.
Chen N, Fang W, Lin Z, Peng P, Wang J, Zhan J, et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother. 2017;66:1175–87. https://doi.org/10.1007/s00262-017-2005-z.
Hegde A, Andreev-Drakhlin AY, Roszik J, Huang L, Liu S, Hess K, et al. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open. 2020;5:e000799. https://doi.org/10.1136/esmoopen-2020-000799.
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.
Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–301. https://doi.org/10.1056/NEJMoa1716948.
Non-Small Cell Lung Cancer (Version 2.2021). National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed 30 Jan 2021.
• Lin JJ, Liu SV, McCoach CE, Zhu VW, Tan AC, Yoda S, et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol. 2020;31:1725–33. https://doi.org/10.1016/j.annonc.2020.09.015Multicenter molecular profiling study identifying both off-target, RET-independent mechanisms and acquired RET mutations as mechanisms of resistance to the RET-selective TKIs selpercatinib and pralsetinib.
Solomon BJ, Tan L, Lin JJ, Wong SQ, Hoolizeck S, Ebata K, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol. 2020;15:541–9. https://doi.org/10.1016/j.jtho.2020.01.006.
Subbiah V, Shen T, Terzyan SS, Liu X, Hu X, Patel KP, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol. 2021;32:261–8. https://doi.org/10.1016/j.annonc.2020.10.599.
Rosen EY, Johnson ML, Clifford SE, Somwar R, Kherani JF, Son J, et al. Overcoming MET-dependent resistance to selective RET inhibition in patients with RET fusion–positive lung cancer by combining selpercatinib with crizotinib. Clin Cancer Res. 2021;27:34–42. https://doi.org/10.1158/1078-0432.CCR-20-2278.
Lin JJ, Ritterhouse LL, Ali SM, Bailey M, Schrock AB, Gainor JF, et al. ROS1 fusions rarely overlap with other oncogenic drivers in non–small cell lung cancer. J Thorac Oncol. 2017;12:872–7. https://doi.org/10.1016/j.jtho.2017.01.004.
Gainor JF, Varghese AM, Ou SI, Kabraji S, Awad MM, Katayama R, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:4273–81. https://doi.org/10.1158/1078-0432.CCR-13-0318.
Song Z, Yu X, Zhang Y. Clinicopathologic characteristics, genetic variability and therapeutic options of RET rearrangements patients in lung adenocarcinoma. Lung Cancer. 2016;101:16–21. https://doi.org/10.1016/j.lungcan.2016.09.002.
Kim J-O, Lee J, Shin J-Y, Kim MY, Son KH, Jung C-K, et al. The clinical characteristics of RET rearranged lung adenocarcinoma patients. J Clin Oncol. 2015;33(Suppl 15):e18528. https://doi.org/10.1200/jco.2015.33.15_suppl.e18528.
Codony-Servat J, García-Roman S, Molina-Vila MÁ, Bertran-Alamillo J, Viteri S, d’Hondt E, et al. Anti-epidermal growth factor vaccine antibodies increase the antitumor activity of kinase inhibitors in ALK and RET rearranged lung cancer cells. Transl Oncol. 2021;14:100887. https://doi.org/10.1016/j.tranon.2020.100887.
Fujimura T, Furugaki K, Harada N, Yoshimura Y. Enhanced antitumor effect of alectinib in combination with cyclin-dependent kinase 4/6 inhibitor against RET-fusion-positive non–small cell lung cancer cells. Cancer Biol Ther. 2020;21:863–70. https://doi.org/10.1080/15384047.2020.1806643.
Subbiah V, Berry J, Roxas M, Guha-Thakurta N, Subbiah IM, Ali SM, et al. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer. 2015;89:76–9. https://doi.org/10.1016/j.lungcan.2015.04.004.
Funding
C.E.M. has received honoraria from Takeda, Guardant Health, Genentech, Astra Zeneca, and Novartis, and research funding from Novartis and Revolution Medicines.
Availability of data and materials
Not applicable.
Code availability
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
F.S. has no conflict of interest to disclose. C.E.M. is currently employed by Genentech Inc, USA.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Lung Cancer
Rights and permissions
About this article
Cite this article
Sun, F., McCoach, C.E. Therapeutic Advances in the Management of Patients with Advanced RET Fusion-Positive Non-Small Cell Lung Cancer. Curr. Treat. Options in Oncol. 22, 72 (2021). https://doi.org/10.1007/s11864-021-00867-8
Accepted:
Published:
DOI: https://doi.org/10.1007/s11864-021-00867-8