Skip to main content

Advertisement

Log in

Bone Morphogenic Protein Signaling and Melanoma

  • Skin Cancer (T Ito, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Malignant melanoma is a deadly form of skin cancer caused by neoplastic transformation of melanocytic cells. Despite recent progress in melanoma therapy, by inhibition of activated oncogenes or immunotherapy, survival rate for metastatic melanoma patients remains low. The remarkable phenotypic plasticity of melanoma cells allows for rapid development of invasive properties and metastatic tumors, the main cause of mortality in melanoma patients. Phenotypic and molecular analyses of developing tumors revealed that epithelial-mesenchymal transition (EMT), a cellular and molecular mechanism, controls transition from mature melanocyte to less differentiated melanocyte lineage progenitor cells forming melanoma tumors. This transition is facilitated by persistence of transcriptional regulatory circuit characteristic of embryonic stage in mature melanocytes. Switching of the developmental program of mature melanocyte to EMT is induced by accumulated mutations, especially targeting BRAF, N-RAS, or MEK1/2 signaling pathways, and further promoted by dynamic stimuli from local environment including hypoxia, interactions with extracellular matrix and growth factors or cytokines. Recent reports demonstrate that signaling mediated by transforming growth factor-β (TGF-β) and bone morphogenic proteins (BMPs) play critical roles in inducing EMT by controlling expression of critical transcription factors. BMPs are essential modulators of differentiation, proliferation, apoptosis, invasiveness, and metastases in developing melanoma tumors. They control transcription and epigenetic landscape of melanoma cells. Better understanding of the role of BMPs may lead to new strategies to control EMT processes in melanocyte cell lineage and to achieve clinical benefits for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. https://doi.org/10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  2. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51. https://doi.org/10.1016/S0140-6736(15)60898-4.

    Article  CAS  PubMed  Google Scholar 

  3. Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol. 2014;11(1):24–37. https://doi.org/10.1038/nrclinonc.2013.208.

    Article  CAS  PubMed  Google Scholar 

  4. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76. https://doi.org/10.1056/NEJMoa1408868.

    Article  CAS  PubMed  Google Scholar 

  5. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6. https://doi.org/10.1126/science.271.5256.1734.

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. https://doi.org/10.1016/j.cell.2015.05.044.

    Article  CAS  Google Scholar 

  7. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4(7):816–27. https://doi.org/10.1158/2159-8290.CD-13-0424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA, Taylor-Weiner A, et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014;4(1):61–8. https://doi.org/10.1158/2159-8290.CD-13-0631.

    Article  CAS  PubMed  Google Scholar 

  9. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63. https://doi.org/10.1016/j.cell.2012.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12. https://doi.org/10.1038/nrc2627.

    Article  CAS  PubMed  Google Scholar 

  11. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14(1):79–89. https://doi.org/10.1016/j.ccr.2008.06.005.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. https://doi.org/10.1126/scisignal.2005189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell. 2013;24(4):466–80. https://doi.org/10.1016/j.ccr.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  14. Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem. 2007;102(4):829–39. https://doi.org/10.1002/jcb.21509.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D. Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev. 2005;24(2):251–63. https://doi.org/10.1007/s10555-005-1575-y.

    Article  CAS  PubMed  Google Scholar 

  16. Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene. 2007;26(28):4158–70. 1210182 [pii]. https://doi.org/10.1038/sj.onc.1210182.

    Article  CAS  PubMed  Google Scholar 

  17. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kishigami S, Mishina Y. BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev. 2005;16(3):265–78. https://doi.org/10.1016/j.cytogfr.2005.04.002.

    Article  CAS  PubMed  Google Scholar 

  19. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147(1):35–51. https://doi.org/10.1093/jb/mvp148.

    Article  CAS  PubMed  Google Scholar 

  20. Ferguson EL, Anderson KV. Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development. 1992;114(3):583–97.

    Article  CAS  PubMed  Google Scholar 

  21. Zou H, Niswander L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science. 1996;272(5262):738–41.

    Article  CAS  PubMed  Google Scholar 

  22. Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009;16(3):329–43. https://doi.org/10.1016/j.devcel.2009.02.012.

    Article  CAS  PubMed  Google Scholar 

  23. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115(3):281–92 S009286740300847X [pii].

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133(6):1106–17. S0092-8674(08)00617-X [pii]. https://doi.org/10.1016/j.cell.2008.04.043.

    Article  CAS  PubMed  Google Scholar 

  25. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. https://doi.org/10.1038/35102167.

    Article  CAS  PubMed  Google Scholar 

  26. Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev. 2016;27:105–18. https://doi.org/10.1016/j.cytogfr.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16(12):723–40. https://doi.org/10.1038/nri.2016.112.

    Article  CAS  PubMed  Google Scholar 

  28. Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta family: context-dependent roles in Cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5). https://doi.org/10.1101/cshperspect.a021873.

  29. Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811. nrd3810 [pii]. https://doi.org/10.1038/nrd3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soubrier F, Chung WK, Machado R, Grunig E, Aldred M, Geraci M, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D13–21. https://doi.org/10.1016/j.jacc.2013.10.035.

    Article  CAS  PubMed  Google Scholar 

  31. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 1999;59(24):6113–7.

    CAS  PubMed  Google Scholar 

  32. Walsh DW, Godson C, Brazil DP, Martin F. Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol. 2010;20(5):244–56. https://doi.org/10.1016/j.tcb.2010.01.008.

    Article  CAS  PubMed  Google Scholar 

  33. Nelsen SM, Christian JL. Site-specific cleavage of BMP4 by furin, PC6, and PC7. J Biol Chem. 2009;284(40):27157–66. https://doi.org/10.1074/jbc.M109.028506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Umulis D, O'Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development. 2009;136(22):3715–28. https://doi.org/10.1242/dev.031534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueller TD, Nickel J. Promiscuity and specificity in BMP receptor activation. FEBS Lett. 2012;586(14):1846–59. https://doi.org/10.1016/j.febslet.2012.02.043.

    Article  CAS  PubMed  Google Scholar 

  36. Daly AC, Randall RA, Hill CS. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. 2008;28(22):6889–902. https://doi.org/10.1128/MCB.01192-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A. 2000;97(6):2626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21(7):1743–53. https://doi.org/10.1093/emboj/21.7.1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramachandran A, Vizan P, Das D, Chakravarty P, Vogt J, Rogers KW, et al. TGF-beta uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. Elife. 2018;7. https://doi.org/10.7554/eLife.31756.

  40. Shu DY, Wojciechowski MC, Lovicu FJ. Bone morphogenetic protein-7 suppresses TGFbeta2-induced epithelial-mesenchymal transition in the lens: implications for cataract prevention. Invest Ophthalmol Vis Sci. 2017;58(2):781–96. https://doi.org/10.1167/iovs.16-20611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiba T, Ishisaki A, Kyakumoto S, Shibata T, Yamada H, Kamo M. Transforming growth factor-beta1 suppresses bone morphogenetic protein-2-induced mesenchymal-epithelial transition in HSC-4 human oral squamous cell carcinoma cells via Smad1/5/9 pathway suppression. Oncol Rep. 2017;37(2):713–20. https://doi.org/10.3892/or.2016.5338.

    Article  CAS  PubMed  Google Scholar 

  42. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41. HHV6108EX6P056CA [pii]. https://doi.org/10.1080/08977190412331279890.

    Article  CAS  PubMed  Google Scholar 

  43. Macias MJ, Martin-Malpartida P, Massague J. Structural determinants of Smad function in TGF-beta signaling. Trends Biochem Sci. 2015;40(6):296–308. https://doi.org/10.1016/j.tibs.2015.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin-Malpartida P, Batet M, Kaczmarska Z, Freier R, Gomes T, Aragon E, et al. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nat Commun. 2017;8(1):2070. https://doi.org/10.1038/s41467-017-02054-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19(1):71–88.

    Article  CAS  PubMed  Google Scholar 

  46. Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, et al. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 2009;28(14):2028–41. emboj2009162 [pii]. https://doi.org/10.1038/emboj.2009.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 1999;18(1):179–87. https://doi.org/10.1093/emboj/18.1.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  49. Weiskirchen R, Meurer SK. BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci. 2013;18:1407–34.

    Article  CAS  Google Scholar 

  50. Yao J, Kim TW, Qin J, Jiang Z, Qian Y, Xiao H, et al. Interleukin-1 (IL-1)-induced TAK1-dependent Versus MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-associated kinase modification. J Biol Chem. 2007;282(9):6075–89. M609039200 [pii]. https://doi.org/10.1074/jbc.M609039200.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Zhou F. Garcia de Vinuesa A, de Kruijf EM, Mesker WE, Hui L et al. TRAF4 promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol Cell. 2013;51(5):559–72. https://doi.org/10.1016/j.molcel.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  52. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10(10):1199–207. https://doi.org/10.1038/ncb1780.

    Article  CAS  PubMed  Google Scholar 

  53. Choi KC, Lee YS, Lim S, Choi HK, Lee CH, Lee EK, et al. Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1. Nat Immunol. 2006;7(10):1057–65. https://doi.org/10.1038/ni1383.

    Article  CAS  PubMed  Google Scholar 

  54. Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, et al. TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci Signal. 2017;10(486). https://doi.org/10.1126/scisignal.aal4186.

  55. de Gramont A, Faivre S, Raymond E. Novel TGF-beta inhibitors ready for prime time in onco-immunology. Oncoimmunology. 2017;6(1):e1257453. https://doi.org/10.1080/2162402X.2016.1257453.

    Article  CAS  PubMed  Google Scholar 

  56. Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, et al. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight. 2017;2(7):e90932. https://doi.org/10.1172/jci.insight.90932.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Serova M, Tijeras-Raballand A, Dos Santos C, Albuquerque M, Paradis V, Neuzillet C, et al. Effects of TGF-beta signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients. Oncotarget. 2015;6(25):21614–27. https://doi.org/10.18632/oncotarget.4308.

    Article  PubMed  PubMed Central  Google Scholar 

  58. DaCosta BS, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65(3):744–52. https://doi.org/10.1124/mol.65.3.744.

    Article  Google Scholar 

  59. Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR, et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol. 2010;5(2):245–53. https://doi.org/10.1021/cb9002865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cross EE, Thomason RT, Martinez M, Hopkins CR, Hong CC, Bader DM. Application of small organic molecules reveals cooperative TGFbeta and BMP regulation of mesothelial cell behaviors. ACS Chem Biol. 2011;6(9):952–61. https://doi.org/10.1021/cb200205z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vogt J, Traynor R, Sapkota GP. The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cell Signal. 2011;23(11):1831–42. S0898-6568(11)00191-4 [pii]. https://doi.org/10.1016/j.cellsig.2011.06.019.

    Article  CAS  PubMed  Google Scholar 

  62. Kirmizitas A, Meiklejohn S, Ciau-Uitz A, Stephenson R, Patient R. Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. Proc Natl Acad Sci U S A. 2017;114(23):5814–21. https://doi.org/10.1073/pnas.1610615114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Augeri DJ, Langenfeld E, Castle M, Gilleran JA, Langenfeld J. Inhibition of BMP and of TGFbeta receptors downregulates expression of XIAP and TAK1 leading to lung cancer cell death. Mol Cancer. 2016;15:27. https://doi.org/10.1186/s12943-016-0511-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newman JH, Augeri DJ, NeMoyer R, Malhotra J, Langenfeld E, Chesson CB, et al. Novel bone morphogenetic protein receptor inhibitor JL5 suppresses tumor cell survival signaling and induces regression of human lung cancer. Oncogene. 2018;37(27):3672–85. https://doi.org/10.1038/s41388-018-0156-9.

    Article  CAS  PubMed  Google Scholar 

  65. Reichert S, Randall RA, Hill CS. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development. 2013;140(21):4435–44. https://doi.org/10.1242/dev.098707.

    Article  CAS  PubMed  Google Scholar 

  66. Crane JF, Trainor PA. Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol. 2006;22:267–86. https://doi.org/10.1146/annurev.cellbio.22.010305.103814.

    Article  CAS  PubMed  Google Scholar 

  67. Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol. 2013;5(2). https://doi.org/10.1101/cshperspect.a008326.

  68. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet. 2005;37(10):1047–54. https://doi.org/10.1038/ng1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sinnberg T, Niessner H, Levesque MP, Dettweiler C, Garbe C, Busch C. Embryonic bone morphogenetic protein and nodal induce invasion in melanocytes and melanoma cells. Biol Open. 2018;7(6). https://doi.org/10.1242/bio.032656.

  70. Busch C, Drews U, Garbe C, Eisele SR, Oppitz M. Neural crest cell migration of mouse B16-F1 melanoma cells transplanted into the chick embryo is inhibited by the BMP-antagonist noggin. IntJOncol. 2007;31(6):1367–78.

    Google Scholar 

  71. Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 2005;65(2):448–56 65/2/448 [pii].

    CAS  PubMed  Google Scholar 

  72. Rothhammer T, Braig S, Bosserhoff AK. Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur J Cancer. 2008;44(16):2526–34. https://doi.org/10.1016/j.ejca.2008.07.029.

    Article  CAS  PubMed  Google Scholar 

  73. Tulchinsky E, Pringle JH, Caramel J, Ansieau S. Plasticity of melanoma and EMT-TF reprogramming. Oncotarget. 2014;5(1):1–2. https://doi.org/10.18632/oncotarget.1662.

    Article  PubMed  Google Scholar 

  74. • Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33(15-16):983–1007. https://doi.org/10.1101/gad.324657.119A comprehensive review of MITF transcription factor, a major melanocyte lineage differentiation factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rambow F, Job B, Petit V, Gesbert F, Delmas V, Seberg H, et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep. 2015;13(4):840–53. https://doi.org/10.1016/j.celrep.2015.09.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shakhova O. Neural crest stem cells in melanoma development. Curr Opin Oncol. 2014;26(2):215–21. https://doi.org/10.1097/CCO.0000000000000046.

    Article  CAS  PubMed  Google Scholar 

  77. Hohenauer T, Berking C, Schmidt A, Haferkamp S, Senft D, Kammerbauer C, et al. The neural crest transcription factor Brn3a is expressed in melanoma and required for cell cycle progression and survival. EMBO Molec Med. 2013;5(6):919–34. https://doi.org/10.1002/emmm.201201862.

    Article  CAS  Google Scholar 

  78. Frey P, Devisme A, Schrempp M, Andrieux G, Boerries M, Hecht A. Canonical BMP signaling executes epithelial-mesenchymal transition downstream of SNAIL1. Cancers (Basel). 2020;12(4). https://doi.org/10.3390/cancers12041019.

  79. O'Brien-Ball C, Biddle A. Reprogramming to developmental plasticity in cancer stem cells. Dev Biol. 2017;430(2):266–74. https://doi.org/10.1016/j.ydbio.2017.07.025.

    Article  CAS  PubMed  Google Scholar 

  80. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108(19):7950–5. https://doi.org/10.1073/pnas.1102454108.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490(7420):412–6. https://doi.org/10.1038/nature11538.

    Article  CAS  PubMed  Google Scholar 

  82. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene. 2012;31(19):2461–70. https://doi.org/10.1038/onc.2011.425.

    Article  CAS  PubMed  Google Scholar 

  83. Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433(7027):764–9. https://doi.org/10.1038/nature03269.

    Article  CAS  PubMed  Google Scholar 

  84. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20(24):3426–39. https://doi.org/10.1101/gad.406406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. •• Infarinato NR, Stewart KS, Yang Y, Gomez NC, Pasolli HA, Hidalgo L, et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev. 2020;34(23-24):1713–34. https://doi.org/10.1101/gad.340281.120Molecular analysis of BMP impact on melanocyte stem cell development in hair follicle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venkatesan AM, Vyas R, Gramann AK, Dresser K, Gujja S, Bhatnagar S, et al. Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma. J Clin Invest. 2018;128(1):294–308. https://doi.org/10.1172/JCI92513.

    Article  PubMed  Google Scholar 

  87. Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. Elife. 2019;8. https://doi.org/10.7554/eLife.50047Systematic analysis of melanocye development in response to BMP/GDF6 signaling in zebrafish model.

  88. • Perego M, Maurer M, Wang JX, Shaffer S, Muller AC, Parapatics K, et al. A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene. 2018;37(3):302–12. https://doi.org/10.1038/onc.2017.341Identification of highly invasive melanoma tumor subset.

    Article  CAS  PubMed  Google Scholar 

  89. Braig S, Bosserhoff AK. Death inducer-obliterator 1 (Dido1) is a BMP target gene and promotes BMP-induced melanoma progression. Oncogene. 2013;32(7):837–48. https://doi.org/10.1038/onc.2012.115.

    Article  CAS  PubMed  Google Scholar 

  90. Liu Y, Kim H, Liang J, Lu W, Ouyang B, Liu D, et al. The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal. J Biol Chem. 2014;289(8):4778–86. https://doi.org/10.1074/jbc.M113.486290.

    Article  CAS  PubMed  Google Scholar 

  91. Yang J, Wang J, Pan L, Li H, Rao C, Zhang X, et al. BMP4 is required for the initial expression of MITF in melanocyte precursor differentiation from embryonic stem cells. Exp Cell Res. 2014;320(1):54–61. https://doi.org/10.1016/j.yexcr.2013.09.017.

    Article  CAS  PubMed  Google Scholar 

  92. Sharov AA, Fessing M, Atoyan R, Sharova TY, Haskell-Luevano C, Weiner L, et al. Bone morphogenetic protein (BMP) signaling controls hair pigmentation by means of cross-talk with the melanocortin receptor-1 pathway. Proc Natl Acad Sci U S A. 2005;102(1):93–8. https://doi.org/10.1073/pnas.0408455102.

    Article  CAS  PubMed  Google Scholar 

  93. Park HY, Wu C, Yaar M, Stachur CM, Kosmadaki M, Gilchrest BA. Role of BMP-4 and its signaling pathways in cultured human melanocytes. Int J Cell Biol. 2009;2009:750482. https://doi.org/10.1155/2009/750482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh SK, Abbas WA, Tobin DJ. Bone morphogenetic proteins differentially regulate pigmentation in human skin cells. J Cell Sci. 2012;125(Pt 18):4306–19. https://doi.org/10.1242/jcs.102038.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kraj PhD.

Ethics declarations

Conflict of Interest

Piotr Kraj declares that there is no conflict of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skin Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraj, P. Bone Morphogenic Protein Signaling and Melanoma. Curr. Treat. Options in Oncol. 22, 48 (2021). https://doi.org/10.1007/s11864-021-00849-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00849-w

Keywords

Navigation