Skip to main content

Advertisement

Log in

Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma

  • Sarcoma (SH Okuno, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Osteosarcoma (OS), the most common primary malignant bone tumor, is a vastly aggressive disease in children and adolescents. Although dramatic progress in therapeutic strategies have achieved over the past several decades, the outcome remains poor for most patients with metastatic or recurrent OS. Nowadays, conventional treatment for OS patients is surgery combined with multidrug chemotherapy including doxorubicin, methotrexate, and cisplatin (CDDP). In this sense, cisplatin (CDDP) is one of the most drugs used in the treatment of OS but drug resistance to CDDP appears as a serious problem in the use of this drug in the treatment of OS. Thus, we consider that the understanding the molecular mechanisms and the genes involved that lead to CDDP resistance is essential to developing more effective treatments against OS. In this review, we present an outline of the key role of the long non-coding RNAs (lncRNAs) in CDDP resistance in OS. This overview is expected to contribute to understand the mechanisms of CDDP resistance in OS and the relationship of the expression regulation of several lncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kumar R, Kumar M, Malhotra K, Patel S. Primary osteosarcoma in the elderly revisited: current concepts in diagnosis and treatment. Curr Oncol Rep, Current Medicine Group LLC. 1:2018 A literature search was performed utilizing PubMed. Several recent clinical trials are reviewed in detail, as is innovative research evaluating novel agents and surgical techniques which hold promise in the osteosarcoma treatment.

  2. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma [Internet]. Expert Rev Anticancer Ther, Taylor and Francis Ltd. 2018:39–50 This article describes the clinical, imaging, and treatment of primary osteosarcoma in older patients, including demographic data of 920 patients from the University of Texas MD Anderson Cancer Center in Houston, TX, USA.

  3. Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma (Review). Oncol Lett, Spandidos Publications. 2020:2606–12 This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.

  4. Kager L, Zoubek A, Pötschger U, Kastner U, Flege S, Kempf-Bielack B, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21:2011–8.

    Article  PubMed  Google Scholar 

  5. Aljubran AH, Griffin A, Pintilie M, Blackstein M. Osteosarcoma in adolescents and adults: Survival analysis with and without lung metastases. Ann Oncol. 2009;20:1136–41.

    Article  CAS  PubMed  Google Scholar 

  6. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer. 2009;125:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics. J Nature, Publishing Group. 2017:11–20.

  8. Dasari S, Tchounwou PB. P. Cisplatin in cancer therapy: molecular mechanisms of action [Internet]. Eur J Pharmacol, Elsevier. 2014:364–78.

  9. Amable L. Cisplatin resistance and opportunities for precision medicine [Internet]. Pharmacol Res Academic Press. 2016:27–36.

  10. Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome [Internet]. Nat Rev Genet. 2010:559–71.

  11. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol, Taylor and Francis Inc. 2013:924–33.

  12. Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: physiology and disease [Internet]. Non-coding RNA. MDPI AG; 2019

  13. Xiong XD, Ren X, Cai MY, Yang JW, Liu X, Yang JM. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells [Internet]. Drug Resist Updat, Churchill Livingstone. 2016:28–42.

  14. Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, et al. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer, BioMed Central Ltd. 2017.

  15. Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer [Internet]. J Cell Mol Med, Blackwell Publishing Inc. 2017:3120–40.

  16. Schor IE, Bussotti G, Maleš M, Forneris M, Viales RR, Enright AJ, et al. Non-coding RNA expression, function, and variation during drosophila embryogenesis. Curr Biol [Internet], Cell Press. 2018;28:3547–3561.e9.

    CAS  Google Scholar 

  17. Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs [Internet]. Mol Genet Genomics, Springer Verlag. 2016:1013–33.

  18. Li L, Wang Y, Zhang X, Huang Q, Diao Y, Yin H, et al. Long non-coding RNA HOXD-AS1 in cancer. Clin Chim Acta, Elsevier BV. 2018:197–201.

  19. Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene [Internet], Elsevier BV. 2017;629:16–28.

    CAS  Google Scholar 

  20. Renganathan A, Felley-Bosco E. Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol [Internet], Springer New York LLC. 2017:199–222.

  21. Unfried JP, Serrano G, Suarez B, Sangro P, Ferretti V, Prior C, et al. Identification of coding and long noncoding RNAs differentially expressed in tumors and preferentially expressed in healthy tissues. Cancer Res [Internet], American Association for Cancer Research Inc. 2019;79:5167–80.

    CAS  Google Scholar 

  22. Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction activates MicroRNA and LncRNA signaling associated with chemoresistance, invasion, and tumor progression. Front Oncol [Internet], Frontiers Media SA. 2019:9.

  23. Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer, BioMed Central Ltd. 2019.

  24. Chen QN, Wei CC, Wang ZX, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget Impact Journals LLC. 2017:1925–36.

  25. Kilari D, Guancial E, Kim ES. Role of copper transporters in platinum resistance. World J Clin Oncol, Baishideng Publishing Group Co, Limited. 2016:106–13.

  26. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents [Internet]. Cancer Treat Rev. 2007:9–23.

  27. Wang D. Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005:307–20.

  28. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007:573–84.

  29. Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res, Academic Press. 2016:27–36.

  30. Fuertes MA, Alonso C, Perez JM. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. ChemInform. 2003;34.

  31. Xie X, Liu W, Duan Z, Li X, Zhang L, Yang G. LncRNA NORAD targets miR-410-3p to regulate drug resistance sensitivity of osteosarcoma. Cell Mol Biol (Noisy-le-grand), NLM (Medline). 2020;66:143–8.

    Article  Google Scholar 

  32. Liu L, Zheng M, Wang X, Gao Y, Gu Q. LncRNA NR_136400 Suppresses cell proliferation and invasion by acting as a ceRNA of TUSC5 that is modulated by miR-8081 in osteosarcoma. Front Pharmacol, Frontiers Media SA. 2020;11.

  33. Li G, Zhu Y. Effect of lncRNA ANRIL knockdown on proliferation and cisplatin chemoresistance of osteosarcoma cells in vitro. Pathol Res Pract, Elsevier GmbH. 2019;215:931–8.

    Article  CAS  Google Scholar 

  34. Qi X, Yu XJ, Wang XM, Song TN, Zhang J, Guo XZ, et al. Knockdown of KCNQ1OT1 suppresses cell invasion and sensitizes osteosarcoma cells to CDDP by upregulating DNMT1-mediated Kcnq1 expression. Mol Ther - Nucleic Acids, Cell Press. 2019;17:804–18.

    Article  CAS  Google Scholar 

  35. Liu Y, Gu S, Li H, Wang J, Wei C, Liu Q. SNHG16 promotes osteosarcoma progression and enhances cisplatin resistance by sponging miR-16 to upregulate ATG4B expression. Biochem Biophys Res Commun, Elsevier BV. 2019;518:127–33.

    Article  CAS  Google Scholar 

  36. Li Z, Yu X, Shen J. Long non-coding RNAs: emerging players in osteosarcoma. Tumor Biol, Springer Netherlands. 2016:2811–6.

  37. Wen JF, Jiang YQ, Li C, Dai XK, Wu T, Yin WZ. LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomarkers [Internet], IOS Press BV. 2020;28:231–46.

    CAS  Google Scholar 

  38. Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents [Internet]. Eur J Med Chem, Elsevier Masson srl. 2017:271–89.

  39. Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer. 2012:100–9.

  40. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, European Association for Cardio-Thoracic Surgery. 2002:48–58.

  41. Gonzalez CL, Jaffe ES. The histiocytoses: clinical presentation and differential diagnosis. Oncology (Williston Park). 1990.

  42. He W, Xia Y, Cao P, Hong L, Zhang T, Shen X, et al. Curcuminoid WZ35 synergize with cisplatin by inducing ROS production and inhibiting TrxR1 activity in gastric cancer cells. J Exp Clin Cancer Res [Internet], BioMed Central Ltd. 2019:38.

  43. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death [Internet]. Nat Rev Mol Cell Biol. 2008:47–59.

  44. Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, et al. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia [Internet], Nature Publishing Group. 2018;32:2250–62.

    CAS  Google Scholar 

  45. Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, et al. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One [Internet]. 2009:4.

  46. Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat. 2010;192:275–83.

    Article  CAS  PubMed  Google Scholar 

  47. Suske G. The Sp-family of transcription factors. Gene. 1999:291–300.

  48. Yin Z, Pascual C, Klionsky DJ. Autophagy: machinery and regulation. Microb Cell, Shared Science Publishers OG. 2016:588–96.

  49. Wang M, Law ME, Castellano RK, Law BK. The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol, Elsevier Ireland Ltd; 2018. p. 66–79.

  50. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: how does it work? Annu Rev Biochem, Annual Reviews Inc. 2016;85:685–713.

    Article  CAS  Google Scholar 

  51. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008:27–42.

  52. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010:1383–435.

  53. Mah LY, Ryan KM. Autophagy and cancer. Cold Spring Harb Perspect Biol. 2012.

  54. Liu H, Huan L, Yin J, Qin M, Zhang Z, Zhang Z, et al. Role of microRNA-130a in myocardial hypoxia/reoxygenation injury. Exp Ther Med, Spandidos Publications. 2017;13:759–65.

    Article  CAS  Google Scholar 

  55. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. J EMBO. 2017;36:1811–36.

    Article  CAS  Google Scholar 

  56. Ren JH, He WS, Nong L, Zhu QY, Hu K, Zhang RG, et al. Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biother Radiopharm [Internet], Mary Ann Liebert Inc. 2010;25:75–80.

    CAS  Google Scholar 

  57. Wickström M, Dyberg C, Milosevic J, Einvik C, Calero R, Sveinbjörnsson B, et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun [Internet], Nature Publishing Group. 2015:6.

  58. Zhang L, Zhao G, Ji S, Yuan Q, Zhou H. Downregulated long non-coding RNA MSC-AS1 inhibits osteosarcoma progression and increases sensitivity to cisplatin by binding to MicroRNA-142. Med Sci Monit, International Scientific Information, Inc. 2020;26.

  59. Safa AR. Resistance to cell death and its modulation in cancer stem cells. Crit Rev Oncog Begell House Inc. 2016;21:203–19.

    Article  Google Scholar 

  60. Xie H, Zhu D, Xu C, Zhu H, Chen P, Li H, et al. Long none coding RNA HOTTIP/HOXA13 act as synergistic role by decreasing cell migration and proliferation in Hirschsprung disease. Biochem Biophys Res Commun [Internet], Academic Press Inc. 2015;463:569–74.

    Article  CAS  Google Scholar 

  61. Song L, Zhou Z, Gan Y, Li P, Xu Y, Zhang Z, et al. Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J Cell Biochem, Wiley-Liss Inc. 2019;120:9656–66.

    Article  CAS  Google Scholar 

  62. Liu L. Wang S. Long non-coding RNA OIP5-AS1 knockdown enhances CDDP sensitivity in osteosarcoma via miR-377-3p/FOSL2 axis. Onco Targets Ther, Dove Medical Press Ltd. 2020;13:3853–66.

    Article  CAS  Google Scholar 

  63. Cheng FH, Zhao ZS, Liu WD. Long non-coding RNA ROR regulated ABCB1 to induce cisplatin resistance in osteosarcoma by sponging miR-153-3p. Eur Rev Med Pharmacol Sci [Internet], Verduci Editore srl. 2019;23:7256–65.

    Google Scholar 

  64. Cheng Y, Shen X, Zheng M, Zou G, Shen Y. Knockdown of lncrna NCK-AS1 regulates cisplatin resistance through modulating mir-137 in osteosarcoma cells. Onco Targets Ther [Internet], Dove Medical Press Ltd. 2019;12:11057–68.

    Article  CAS  Google Scholar 

  65. Meng Y, Hao D, Huang Y, Jia S, Zhang J, He X, et al. Positive feedback loop SP1/MIR17HG/miR-130a-3p promotes osteosarcoma proliferation and cisplatin resistance. Biochem Biophys Res Commun [Internet], Elsevier BV. 2020;521:739–45.

    Article  CAS  Google Scholar 

  66. Liang R, Liu Z, Chen Z, Yang Y, Li Y, Cui Z, et al. Long noncoding RNA DNAJC3-AS1 promotes osteosarcoma progression via its sense-cognate gene DNAJC3. Cancer Med, Blackwell Publishing Ltd. 2019;8:761–72.

    CAS  Google Scholar 

  67. Zhou Q, Hu T, Xu Y. Anticancer potential of TUG1 knockdown in cisplatin-resistant osteosarcoma through inhibition of MET/Akt signalling. J Drug Target [Internet], Taylor and Francis Ltd. 2020;28:204–11.

    Article  CAS  Google Scholar 

  68. Li Z, Zhao L, Wang Q. Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway. Am J Transl Res. 2016;8(5):2385–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fu D, Lu C, Qu X, Li P, Chen K, Shan L, et al. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY) [Internet], Impact Journals LLC. 2019;11:8374–85.

    CAS  Google Scholar 

  70. Hu Y, Yang Q, Wang L, Wang S, Sun F, Xu D, et al. Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci Rep [Internet], Portland Press Ltd. 2018:38.

  71. Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin B, et al. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett [Internet], Elsevier Ireland Ltd. 2016;382:137–46.

    CAS  Google Scholar 

  72. Chen Z, Liu Z, Yang Y, Zhu Z, Liang R, Huang B, et al. Long non-coding RNA RAB11B-AS1 prevents osteosarcoma development and progression via its natural antisense transcript RAB11B. Oncotarget, Impact Journals LLC. 2018;9:26770–86.

    Google Scholar 

  73. Zhang L, Wang Y, Li X, Xia X, Li N, He R, et al. ZBTB7A enhances osteosarcoma chemoresistance by transcriptionally repressing lncRNALINC00473-IL24 activity. Neoplasia (United States) [Internet], Neoplasia Press Inc. 2017;19:908–18.

    CAS  Google Scholar 

  74. Cao X, Xu J, Yue D. LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Ther [Internet], Nature Publishing Group. 2018;25:10–7.

    Article  CAS  Google Scholar 

  75. Lin Q, Zheng H, Xu J, Zhang F, Pan H. LncRNA SNHG16 aggravates tumorigenesis and development of hepatocellular carcinoma by sponging miR-4500 and targeting STAT3. J Cell Biochem [Internet], Wiley-Liss Inc. 2019;120:11604–15.

    CAS  Google Scholar 

  76. Zhu C, Cheng D, Qiu X, Zhuang M, Liu Z. Long noncoding RNA SNHG16 promotes cell proliferation by sponging microRNA-205 and upregulating ZEB1 expression in osteosarcoma. Cell Physiol Biochem [Internet], S Karger AG. 2018;51:429–40.

    Article  CAS  Google Scholar 

  77. Su P, Mu S, Wang Z. Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA Cell Biol [Internet], Mary Ann Liebert Inc. 2019;38:170–5.

    CAS  Google Scholar 

  78. Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression [Internet]. Cancer Res. 2011:5365–9.

  79. Bao ZE, Kong R, Dan YD, Hui YL, Sun M, Han L, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget, Impact Journals LLC. 2014;5:2276–92.

    Google Scholar 

  80. Zhao B, Lu YL, Yang Y, Hu LB, Bai Y, Li RQ, et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF- β 1/ Smad signaling pathway. Cancer Biomarkers [Internet], IOS Press. 2018;21:613–20.

    Article  CAS  Google Scholar 

  81. De Huang M, Chen WM, Qi FZ, Xia R, Sun M, Xu TP, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol, BioMed Central Ltd. 2015;8.

  82. Yu G, Liu G, Yuan D, Dai J, Cui Y, Tang X. Long non-coding RNA ANRIL is associated with a poor prognosis of osteosarcoma and promotes tumorigenesis via PI3K/Akt pathway. J Bone Oncol [Internet], Elsevier GmbH. 2018;11:51–5.

    Article  Google Scholar 

  83. Cheng S, Huang T, Li P, Zhang W, Wang Z, Chen Y. Long non-coding RNA ANRIL promotes the proliferation, migration and invasion of human osteosarcoma cells. Exp Ther Med, Spandidos Publications. 2017;14:5121–5.

    CAS  Google Scholar 

  84. Guan H, Mei Y, Mi Y, Li C, Sun X, Zhao X, et al. Downregulation of lncRNA ANRIL suppresses growth and metastasis in human osteosarcoma cells. Onco Targets Ther [Internet], Dove Medical Press Ltd. 2018;11:4893–9.

    Article  Google Scholar 

  85. Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y, et al. Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRP1 axis. Biomed Pharmacother [Internet], Elsevier Masson SAS. 2019:118.

  86. Bai Y, Li S. Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem [Internet], Wiley-Liss Inc. 2020;121:353–62.

    CAS  Google Scholar 

  87. Li Y, Han X, Feng H, Han J, Long noncoding RNA. OIP5-AS1 in cancer. Clin Chim Acta, Elsevier BV. 2019:75–80.

  88. Sun WL, Kang T, Wang YY, Sun JP, Li C, Liu HJ, et al. Long noncoding RNA OIP5-AS1 targets Wnt-7b to affect glioma progression via modulation of miR-410. Biosci Rep [Internet], Portland Press Ltd. 2019:39.

  89. Dai J, Xu L, Hu X, Han G, Jiang H, Sun H, et al. Long noncoding RNA OIP5-AS1 accelerates CDK14 expression to promote osteosarcoma tumorigenesis via targeting miR-223. Biomed Pharmacother [Internet], Elsevier Masson SAS. 2018;106:1441–7.

    Article  CAS  Google Scholar 

  90. Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation [Internet]. Histol Histopathol. 2000:921–8.

  91. Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8.

  92. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232–46.

    Article  CAS  PubMed  Google Scholar 

  93. Ren K, Xu R, Huang J, Zhao J, Shi W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother Pharmacol [Internet], Springer Verlag. 2017;80:243–50.

    Article  CAS  Google Scholar 

  94. Li C, Miao R, Zhang J, Qu K, Liu C. Long non-coding RNA KCNQ1OT1 mediates the growth of hepatocellular carcinoma by functioning as a competing endogenous RNA of miR-504. Int J Oncol, Spandidos Publications. 2018;52:1603–12.

    CAS  Google Scholar 

  95. Li Y, Li C, Li D, Yang L, Jin J, Zhang B. LncRNA KCNQ1OT1 enhances the chemoresistance of oxaliplatin in colon cancer by targeting the miR-34a/ATG4B pathway. Onco Targets Ther, Dove Medical Press Ltd. 2019;12:2649–60.

    Article  CAS  Google Scholar 

  96. Zhang S, Ma H, Zhang D, Xie S, Wang W, Li Q, et al. LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via MIR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis [Internet], Nature Publishing Group. 2018:9.

  97. Qin W, Leonhardt H, Spada F. Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem. 2011;112:439–44.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res [Internet]. 2013;23:340–50.

    Article  CAS  Google Scholar 

  99. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25:69–80.

    Article  CAS  PubMed  Google Scholar 

  100. Wang SH, Di Zhang M, Wu XC, Weng MZ, Zhou D, Quan ZW. Overexpression of LncRNA-ROR predicts a poor outcome in gallbladder cancer patients and promotes the tumor cells proliferation, migration, and invasion. Tumor Biol [Internet], Springer Netherlands. 2016;37:12867–75.

    Article  CAS  Google Scholar 

  101. Shi H, Pu J, Zhou XL, Ning YY, Bai C. Silencing long non-coding RNA ROR improves sensitivity of non-small-cell lung cancer to cisplatin resistance by inhibiting PI3K/Akt/mTOR signaling pathway. Tumor Biol, SAGE Publications Ltd. 2017;39.

  102. Li H, Jia Y, Cheng J, Liu G, Song F. LncRNA NCK1-AS1 promotes proliferation and induces cell cycle progression by crosstalk NCK1-AS1/MIR-6857/CDK1 pathway. Cell Death Dis [Internet], Nature Publishing Group. 2018:9.

  103. Chang H, Li B, Zhang X, Meng X. NCK1-AS1 promotes NCK1 expression to facilitate tumorigenesis and chemo-resistance in ovarian cancer. Biochem Biophys Res Commun [Internet], Elsevier BV. 2020;522:292–9.

    Article  CAS  Google Scholar 

  104. Xie L, Huang R, Liu S, Wu W, Su A, Li R, et al. A positive feedback loop of SIRT1 and miR17HG promotes the repair of DNA double-stranded breaks. Cell Cycle [Internet], Taylor and Francis Inc. 2019;18:2110–23.

    CAS  Google Scholar 

  105. Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, et al. Absence of BiP Co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet, Cell Press. 2014;95:689–97.

    Article  CAS  Google Scholar 

  106. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, Cell Press. 2016;164:69–80.

    CAS  Google Scholar 

  107. Yang Z, Zhao Y, Lin G, Zhou X, Jiang X, Zhao H. Noncoding RNA activated by DNA damage (NORAD): biologic function and mechanisms in human cancers [Internet]. Clin Chim Acta, Elsevier BV. 2019:5–9.

  108. Wang X, Zou J, Chen H, Zhang P, Lu Z, You Z, et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p. IUBMB Life, Blackwell Publishing Ltd. 2019;71:1482–91.

    Article  CAS  Google Scholar 

  109. Huang Q, Xing S, Peng A, Yu Z. NORAD accelerates chemo-resistance of non-small-cell lung cancer via targeting at miR-129-1-3p/SOX4 axis. Biosci Rep [Internet], Portland Press Ltd. 2020:40.

  110. Cao C, Zhong Q, Lu L, Huang B, Li J, Meng L, et al. Long noncoding RNA MSC-AS1 promotes hepatocellular carcinoma oncogenesis via inducing the expression of phosphoglycerate kinase 1. Cancer Med [Internet], Blackwell Publishing Ltd. 2020;9:5174–84.

    CAS  Google Scholar 

  111. Yao H, Yang L, Tian L, Guo Y, Li Y. LncRNA MSC-AS1 aggravates nasopharyngeal carcinoma progression by targeting miR-524-5p/nuclear receptor subfamily 4 group A member 2 (NR4A2). Cancer Cell Int [Internet], BioMed Central Ltd. 2020:20.

  112. Hu Z, Li L, Cheng P, Liu Q, Zheng X, Peng F, et al. lncRNA MSC-AS1 activates Wnt/β-catenin signaling pathway to modulate cell proliferation and migration in kidney renal clear cell carcinoma via miR-3924/WNT5A. J Cell Biochem [Internet] Wiley-Liss Inc. 2020;121:4085–93.

    CAS  Google Scholar 

  113. Sun Y, Wang P, Yang W, Shan Y, Zhang Q, Wu H. The role of lncRNA MSC-AS1/miR-29b-3p axis-mediated CDK14 modulation in pancreatic cancer proliferation and Gemcitabine-induced apoptosis. Cancer Biol Ther [Internet], Taylor and Francis Inc. 2019;20:729–39.

    Article  CAS  Google Scholar 

  114. Liu F, Tai Y, Ma J. LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol Ther [Internet], Taylor and Francis Inc. 2018;19:534–42.

    Article  CAS  Google Scholar 

  115. Ping G, Xiong W, Zhang L, Li Y, Zhang Y, Zhao Y. Silencing long noncoding RNA PVT1 inhibits tumorigenesis and cisplatin resistance of colorectal cancer. Am J Transl Res. 2018;10(1):138–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhen Q, Gao LN, Wang RF, Chu WW, Zhang YX, Zhao XJ, et al. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem Funct [Internet], Wiley. 2018;36:27–33.

    Article  CAS  Google Scholar 

  117. Fang Z, Chen W, Yuan Z, Liu X, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother [Internet], Elsevier Masson SAS. 2018;101:536–42.

    Article  CAS  Google Scholar 

  118. Ong CT, Corces VG. Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011:283–93.

  119. Li Z, Zhao X, Zhou Y, Liu Y, Zhou Q, Ye H, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med, BioMed Central Ltd. 2015:13.

  120. Zhang H, Zhao L, Wang YX, Xi M, Liu SL, Luo LL. Long non-coding RNA HOTTIP is correlated with progression and prognosis in tongue squamous cell carcinoma. Tumor Biol [Internet], Springer Netherlands. 2015;36:8805–9.

    Article  CAS  Google Scholar 

  121. Chang S, Liu J, Guo S, He S, Qiu G, Lu J, et al. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep [Internet], Spandidos Publications. 2016;35:3577–85.

    Article  CAS  Google Scholar 

  122. Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology [Internet], Hepatology. 2014;59:911–23.

    CAS  PubMed  Google Scholar 

  123. Wang J, Lv B, Su Y, Wang X, Bu J, Yao L. Exosome-mediated transfer of lncRNA HOTTIP promotes cisplatin resistance in gastric cancer cells by regulating HMGA1/miR-218 axis. Onco Targets Ther [Internet], Dove Medical Press Ltd. 2019;12:11325–38.

    Article  CAS  Google Scholar 

  124. Yin F, Zhang Q, Dong Z, Hu J, Ma Z. LncRNA HOTTIP participates in cisplatin resistance of tumor cells by regulating miR-137 expression in pancreatic cancer. Onco Targets Ther [Internet], Dove Medical Press Ltd. 2020;13:2689–99.

    Article  CAS  Google Scholar 

  125. Jiang H, Xiong W, Chen L, Lv Z, Yang C, Li Y. Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer. J Cell Biochem [Internet], Wiley-Liss Inc. 2019;120:8965–74.

    CAS  Google Scholar 

  126. Li Z, Dou P, Liu T, He S. Application of long noncoding rnas in osteosarcoma: biomarkers and therapeutic targets [Internet]. Cell Physiol Biochem, S Karger AG. 2017:1407–19.

  127. Li Z, Zhao L, Wang Q. Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway. Am J Transl Res. 2016 May 15;8(5):2385–93.

  128. Falcon T, Freitas M, Mello AC, Coutinho L, Alvares-Da-Silva MR, Matte U. Analysis of the cancer genome atlas data reveals novel putative ncRNAs targets in hepatocellular carcinoma. Biomed Res Int [Internet], Hindawi Limited. 2018:2018.

  129. Chen P, Wang R, Yue Q, Hao M. Long non-coding RNA TTN-AS1 promotes cell growth and metastasis in cervical cancer via miR-573/E2F3. Biochem Biophys Res Commun [Internet], Elsevier BV. 2018;503:2956–62.

    Article  CAS  Google Scholar 

  130. Cui Z, Han B, Wang X, Li Z, Wang J, Lv Y. Long non-coding RNA TTN-AS1 promotes the proliferation and invasion of colorectal cancer cells by activating mir-497-mediated PI3K/Akt/mTOR signaling. Onco Targets Ther, Dove Medical Press Ltd. 2019;12:11531–9.

    Article  CAS  Google Scholar 

  131. Dong MM, Peng SJ, Yuan YN, Luo HP. LncRNA TTN-AS1 contributes to gastric cancer progression by acting as a competing endogenous RNA of miR-376b-3p. Neoplasma [Internet], AEPress, sro. 2019;66:564–75.

    Article  CAS  Google Scholar 

  132. Lin C, Zhang S, Wang Y, Wang Y, Nice E, Guo C, et al. Functional role of a novel long noncoding RNA TTN-AS1 in esophageal squamous cell carcinoma progression and metastasis. Clin Cancer Res [Internet], American Association for Cancer Research Inc. 2018;24:486–98.

    Article  CAS  Google Scholar 

  133. Zhang XN, Zhou J, Lu XJ. The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging miR-485 and enhancing the expression of the STAT3. J Cell Physiol [Internet], Wiley-Liss Inc. 2018;233:6733–41.

    Article  CAS  Google Scholar 

  134. Yu X, Li Z, Zheng H, Chan MTV, Wu WKK. NEAT1: A novel cancer-related long non-coding RNA [Internet]. Cell Prolif, Blackwell Publishing Ltd. 2017;50(2):e12329.

    Article  CAS  Google Scholar 

  135. Sun L, Su Y, Liu X, Xu M, Chen X, Zhu Y, et al. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer [Internet], Ivyspring International Publisher. 2018;9:2631–9.

    Google Scholar 

  136. Xu M, Zhou K, Wu Y, Wang L, Lu S. Linc00161 regulated the drug resistance of ovarian cancer by sponging microRNA-128 and modulating MAPK1. Mol Carcinog, Wiley. 2019;58:577–87.

    Article  CAS  Google Scholar 

  137. Lai KC, Liu CJ, Chang KW, Lee TC. Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene. 2013;32:3686–97.

    Article  CAS  PubMed  Google Scholar 

  138. Lai KC, Liu CJ, Lin TJ, Mar AC, Wang HH, Chen CW, et al. Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells. Cancer Lett, Elsevier Ireland Ltd. 2016;370:207–15.

    CAS  Google Scholar 

  139. Feng X, Wang Y, Ma Z, Yang R, Liang S, Zhang M, et al. MicroRNA-645, upregulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2. BMC Cancer [Internet], BioMed Central Ltd. 2014:14.

  140. Reich NCA. death-promoting role for ISG54/IFIT2 [Internet]. J Interferon Cytokine Res. 2013:199–205.

  141. Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng J, et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor (AR)/miRNA-143-3p signals. Cell Death Differ, Nature Publishing Group. 2017;24:1502–17.

    Article  CAS  Google Scholar 

  142. Kelly EE, Horgan CP, McCaffrey MW. Rab11 proteins in health and disease. Biochem Soc Trans. 2012:1360–7.

  143. Gebhardt C, Breitenbach U, Richter KH, Fürstenberger G, Mauch C, Angel P, et al. c-Fos-dependent induction of the small ras-related GTPase Rab11a in skin carcinogenesis. Am J Pathol [Internet], American Society for Investigative Pathology Inc. 2005;167:243–53.

    CAS  Google Scholar 

  144. Chung YC, Wei WC, Huang SH, Shih CM, Hsu CP, Chang KJ, et al. Rab11 regulates E-cadherin expression and induces cell transformation in colorectal carcinoma. BMC Cancer [Internet], BioMed Central Ltd. 2014:14.

  145. Jing J, Prekeris R. Polarized endocytic transport: the roles of rab11 and rab11-FIPs in regulating cell polarity. Histopathol. 2009:1171–80.

  146. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8:705–18.

    PubMed  Google Scholar 

Download references

Funding

The work was supported by UNLP (11X/690), CONICET (PIP 0340), and ANPCyT (PICT 2016-1574 from Argentina.

Author information

Authors and Affiliations

Authors

Contributions

Valeria Ferretti: writing—original draft. Ignacio E. León: conceptualization and writing—reviewing and editing.

Corresponding author

Correspondence to Ignacio E. León PhD.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, V.A., León, I.E. Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma. Curr. Treat. Options in Oncol. 22, 41 (2021). https://doi.org/10.1007/s11864-021-00839-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00839-y

Keywords

Navigation