Skip to main content

Advertisement

Log in

Treatment personalization in gastrointestinal neuroendocrine tumors

  • Neuroendocrine Cancers (M Cives, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The clinical scenario of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) is continuously changing due to significant improvements in the definition of their molecular landscapes and the introduction of innovative therapeutic approaches. Many efforts are currently employed in the integration of the genetics/epigenetics and clinical information. This is leading to an improvement of tumor classification, prognostic stratification and ameliorating the management of patients based on a personalized approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40(1):1–18, vii. https://doi.org/10.1016/j.ecl.2010.12.005.

  2. Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol. 2014;25(2):186–92. https://doi.org/10.1007/s12022-014-9313-z.

    Article  CAS  PubMed  Google Scholar 

  3. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–86. https://doi.org/10.1038/s41379-018-0110-y.

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO Classification of Tumours Editorial Board. Digestive system tumours. Lyon: International Agency for Research on Cancer; 2019.

    Google Scholar 

  5. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19(12):991–1002. https://doi.org/10.1016/j.neo.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frizziero M, Chakrabarty B, Nagy B, Lamarca A, Hubner RA, Valle JW, et al. Mixed neuroendocrine non-neuroendocrine neoplasms: a systematic review of a controversial and underestimated diagnosis. J Clin Med. 2020;9(1). https://doi.org/10.3390/jcm9010273.

  7. Sorbye H, Baudin E, Borbath I, Caplin M, Chen J, Cwikla JB, et al. Unmet needs in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). Neuroendocrinology. 2019;108(1):54–62. https://doi.org/10.1159/000493318.

    Article  CAS  PubMed  Google Scholar 

  8. Tsoli M, Chatzellis E, Koumarianou A, Kolomodi D, Kaltsas G. Current best practice in the management of neuroendocrine tumors. Ther Adv Endocrinol Metab. 2019;10:2042018818804698. https://doi.org/10.1177/2042018818804698.

    Article  PubMed  Google Scholar 

  9. •• Kaderli RM, Spanjol M, Kollar A, Butikofer L, Gloy V, Dumont RA, et al. Therapeutic options for neuroendocrine tumors: a systematic review and network meta-analysis. JAMA Oncol. 2019;5(4):480–9. https://doi.org/10.1001/jamaoncol.2018.6720 This is the first meta-data analysis performed in a very large series of GEP-NETs, which compares the safety and efficiency of different available therapies for NENs.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84. https://doi.org/10.1097/PAS.0b013e3182417d36.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singhi AD, Klimstra DS. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72(1):168–77. https://doi.org/10.1111/his.13408.

    Article  PubMed  Google Scholar 

  12. Scarpa A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann Endocrinol (Paris). 2019;80(3):153–8. https://doi.org/10.1016/j.ando.2019.04.010.

    Article  Google Scholar 

  13. Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2018;68(6):471–87. https://doi.org/10.3322/caac.21493.

    Article  PubMed  Google Scholar 

  14. •• Mafficini A, Scarpa A. Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev. 2019;40(2):506–36. https://doi.org/10.1210/er.2018-00160 This updated review summarizes the present knowledge on molecular alterations characterizing NENs at different anatomic sites.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Modlin IM, Pavel M, Kidd M, Gustafsson BI. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010;31(2):169–88. https://doi.org/10.1111/j.1365-2036.2009.04174.x.

    Article  CAS  PubMed  Google Scholar 

  16. Cives M, Strosberg J. The expanding role of somatostatin analogs in gastroenteropancreatic and lung neuroendocrine tumors. Drugs. 2015;75(8):847–58. https://doi.org/10.1007/s40265-015-0397-7.

    Article  CAS  PubMed  Google Scholar 

  17. Papotti M, Bongiovanni M, Volante M, Allia E, Landolfi S, Helboe L, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440(5):461–75. https://doi.org/10.1007/s00428-002-0609-x.

    Article  CAS  PubMed  Google Scholar 

  18. Perez K, Chan J. Treatment of gastroenteropancreatic neuroendocrine tumors. Surg Pathol Clin. 2019;12(4):1045–53. https://doi.org/10.1016/j.path.2019.08.011.

    Article  PubMed  Google Scholar 

  19. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63. https://doi.org/10.1200/JCO.2009.22.8510.

    Article  CAS  PubMed  Google Scholar 

  20. Kvols LK, Moertel CG, O'Connell MJ, Schutt AJ, Rubin J, Hahn RG. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N Engl J Med. 1986;315(11):663–6. https://doi.org/10.1056/NEJM198609113151102.

    Article  CAS  PubMed  Google Scholar 

  21. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33. https://doi.org/10.1056/NEJMoa1316158.

    Article  CAS  PubMed  Google Scholar 

  22. Vinik AI, Wolin EM, Liyanage N, Gomez-Panzani E, Fisher GA. * ESG. Evaluation of lanreotide depot/autogel efficacy and safety as a carcinoid syndrome treatment (Elect): a randomized, double-blind, placebo-controlled trial. Endocr Pract. 2016;22(9):1068–80. https://doi.org/10.4158/EP151172.OR.

    Article  PubMed  Google Scholar 

  23. •• Laskaratos FM, Armeni E, Shah H, Megapanou M, Papantoniou D, Hayes AR, et al. Predictors of antiproliferative effect of lanreotide autogel in advanced gastroenteropancreatic neuroendocrine neoplasms. Endocrine. 2020;67(1):233–42. https://doi.org/10.1007/s12020-019-02086-6 This is the first study proposing GEP-NENs grade should be used as the only predictive factor of response to LAN treatment.

    Article  CAS  PubMed  Google Scholar 

  24. Cordoba-Chacon J, Gahete MD, Duran-Prado M, Luque RM, Castano JP. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann N Y Acad Sci. 2011;1220:6–15. https://doi.org/10.1111/j.1749-6632.2011.05985.x.

    Article  CAS  PubMed  Google Scholar 

  25. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 2007;20(11):1172–82. https://doi.org/10.1038/modpathol.3800954.

    Article  CAS  PubMed  Google Scholar 

  26. •• Kasajima A, Papotti M, Ito W, Brizzi MP, La Salvia A, Rapa I, et al. High interlaboratory and interobserver agreement of somatostatin receptor immunohistochemical determination and correlation with response to somatostatin analogs. Hum Pathol. 2018;72:144–52. https://doi.org/10.1016/j.humpath.2017.11.008 This study proposes a highly standardized tool to evaluate SSTRs expression on NENs, which is also a reliable predictive factor for the treatments with SSAs.

    Article  CAS  PubMed  Google Scholar 

  27. Boscaro M, Ludlam WH, Atkinson B, Glusman JE, Petersenn S, Reincke M, et al. Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab. 2009;94(1):115–22. https://doi.org/10.1210/jc.2008-1008.

    Article  CAS  PubMed  Google Scholar 

  28. Gomes-Porras M, Cardenas-Salas J, Alvarez-Escola C. Somatostatin analogs in clinical practice: a review. Int J Mol Sci. 2020;21(5). https://doi.org/10.3390/ijms21051682.

  29. Kvols LK, Oberg KE, O'Dorisio TM, Mohideen P, de Herder WW, Arnold R, et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr Relat Cancer. 2012;19(5):657–66. https://doi.org/10.1530/ERC-11-0367.

    Article  CAS  PubMed  Google Scholar 

  30. Cives M, Kunz PL, Morse B, Coppola D, Schell MJ, Campos T, et al. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr Relat Cancer. 2015;22(1):1–9. https://doi.org/10.1530/ERC-14-0360.

    Article  CAS  PubMed  Google Scholar 

  31. Wolin EM, Jarzab B, Eriksson B, Walter T, Toumpanakis C, Morse MA, et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Dev Ther. 2015;9:5075–86. https://doi.org/10.2147/DDDT.S84177.

    Article  CAS  Google Scholar 

  32. Vitale G, Dicitore A, Sciammarella C, Di Molfetta S, Rubino M, Faggiano A, et al. Pasireotide in the treatment of neuroendocrine tumors: a review of the literature. Endocr Relat Cancer. 2018;25(6):R351–R64. https://doi.org/10.1530/ERC-18-0010.

    Article  CAS  PubMed  Google Scholar 

  33. Villard L, Romer A, Marincek N, Brunner P, Koller MT, Schindler C, et al. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol. 2012;30(10):1100–6. https://doi.org/10.1200/JCO.2011.37.2151.

    Article  CAS  PubMed  Google Scholar 

  34. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35. https://doi.org/10.1056/NEJMoa1607427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with (177)Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578–84. https://doi.org/10.1200/JCO.2018.78.5865 This study shows that, besides improving PFS, the treatment with (177)Lu-Dotatate in patients with progressive midgut NETs, causes less adverse effects compared to high-dose octreotide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85. https://doi.org/10.1159/000443167.

    Article  CAS  PubMed  Google Scholar 

  37. Nonnekens J, van Kranenburg M, Beerens CE, Suker M, Doukas M, van Eijck CH, et al. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib. Theranostics. 2016;6(11):1821–32. https://doi.org/10.7150/thno.15311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. https://doi.org/10.1016/j.cell.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  39. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. https://doi.org/10.1038/nature21063.

    Article  CAS  PubMed  Google Scholar 

  40. Qian ZR, Ter-Minassian M, Chan JA, Imamura Y, Hooshmand SM, Kuchiba A, et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J Clin Oncol. 2013;31(27):3418–25. https://doi.org/10.1200/JCO.2012.46.6946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yao JC, Pavel M, Lombard-Bohas C, Van Cutsem E, Voi M, Brandt U, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J Clin Oncol. 2016;34(32):3906–13. https://doi.org/10.1200/JCO.2016.68.0702.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pavel ME, Baudin E, Oberg KE, Hainsworth JD, Voi M, Rouyrre N, et al. Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome: final overall survival from the randomized, placebo-controlled phase 3 RADIANT-2 study. Ann Oncol. 2017;28(7):1569–75. https://doi.org/10.1093/annonc/mdx193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77. https://doi.org/10.1016/S0140-6736(15)00817-X.

    Article  CAS  PubMed  Google Scholar 

  44. Pavel M, Valle JW, Eriksson B, Rinke A, Caplin M, Chen J, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: systemic therapy - biotherapy and novel targeted agents. Neuroendocrinology. 2017;105(3):266–80. https://doi.org/10.1159/000471880.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Carbonero R, Rinke A, Valle JW, Fazio N, Caplin M, Gorbounova V, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms. Systemic Therapy 2: Chemotherapy. Neuroendocrinology. 2017;105(3):281–94. https://doi.org/10.1159/000473892.

    Article  CAS  PubMed  Google Scholar 

  46. Qin X, Jiang B, Zhang Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle. 2016;15(6):781–6. https://doi.org/10.1080/15384101.2016.1151581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frondorf K, Henkels KM, Frohman MA, Gomez-Cambronero J. Phosphatidic acid is a leukocyte chemoattractant that acts through S6 kinase signaling. J Biol Chem. 2010;285(21):15837–47. https://doi.org/10.1074/jbc.M109.070524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lehman N, Ledford B, Di Fulvio M, Frondorf K, McPhail LC, Gomez-Cambronero J. Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J. 2007;21(4):1075–87. https://doi.org/10.1096/fj.06-6652com.

    Article  CAS  PubMed  Google Scholar 

  49. Ruoff R, Katsara O, Kolupaeva V. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP. Proc Natl Acad Sci U S A. 2016;113(27):7545–50. https://doi.org/10.1073/pnas.1605451113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oberg K, Casanovas O, Castano JP, Chung D, Delle Fave G, Denefle P, et al. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res. 2013;19(11):2842–9. https://doi.org/10.1158/1078-0432.CCR-12-3458.

    Article  CAS  PubMed  Google Scholar 

  51. Scoazec JY. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology. 2013;97(1):45–56. https://doi.org/10.1159/000338371.

    Article  CAS  PubMed  Google Scholar 

  52. Cigrovski Berkovic M, Cacev T, Catela Ivkovic T, Marout J, Ulamec M, Zjacic-Rotkvic V, et al. High VEGF serum values are associated with locoregional spread of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Mol Cell Endocrinol. 2016;425:61–8. https://doi.org/10.1016/j.mce.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  53. Berardi R, Torniai M, Partelli S, Rubini C, Pagliaretta S, Savini A, et al. Impact of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) single nucleotide polymorphisms on outcome in gastroenteropancreatic neuroendocrine neoplasms. PLoS One. 2018;13(5):e0197035. https://doi.org/10.1371/journal.pone.0197035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33(4):407–20. https://doi.org/10.1053/j.seminoncol.2006.04.005.

    Article  CAS  PubMed  Google Scholar 

  55. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13. https://doi.org/10.1056/NEJMoa1003825.

    Article  CAS  PubMed  Google Scholar 

  56. Grande E, Capdevila J, Castellano D, Teule A, Duran I, Fuster J, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015;26(9):1987–93. https://doi.org/10.1093/annonc/mdv252.

    Article  CAS  PubMed  Google Scholar 

  57. Grillo F, Florio T, Ferrau F, Kara E, Fanciulli G, Faggiano A, et al. Emerging multitarget tyrosine kinase inhibitors in the treatment of neuroendocrine neoplasms. Endocr Relat Cancer. 2018;25(9):R453–R66. https://doi.org/10.1530/ERC-17-0531.

    Article  PubMed  Google Scholar 

  58. Keating GM. Bevacizumab: a review of its use in advanced cancer. Drugs. 2014;74(16):1891–925. https://doi.org/10.1007/s40265-014-0302-9.

    Article  CAS  PubMed  Google Scholar 

  59. Crabtree JS. Clinical and preclinical advances in gastroenteropancreatic neuroendocrine tumor therapy. Front Endocrinol (Lausanne). 2017;8:341. https://doi.org/10.3389/fendo.2017.00341.

    Article  Google Scholar 

  60. Ducreux M, Dahan L, Smith D, O'Toole D, Lepere C, Dromain C, et al. Bevacizumab combined with 5-FU/streptozocin in patients with progressive metastatic well-differentiated pancreatic endocrine tumours (BETTER trial)--a phase II non-randomised trial. Eur J Cancer. 2014;50(18):3098–106. https://doi.org/10.1016/j.ejca.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  61. Abdel-Rahman O, Fouad M. Bevacizumab-based combination therapy for advanced gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a systematic review of the literature. J Cancer Res Clin Oncol. 2015;141(2):295–305. https://doi.org/10.1007/s00432-014-1757-5.

    Article  CAS  PubMed  Google Scholar 

  62. Scoville SD, Cloyd JM, Pawlik TM. New and emerging systemic therapy options for well-differentiated gastroenteropancreatic neuroendocrine tumors. Expert Opin Pharmacother. 2020;21(2):183–91. https://doi.org/10.1080/14656566.2019.1694003.

    Article  CAS  PubMed  Google Scholar 

  63. Angelousi A, Kaltsas G, Koumarianou A, Weickert MO, Grossman A. Chemotherapy in NETs: When and how. Rev Endocr Metab Disord. 2017;18(4):485–97. https://doi.org/10.1007/s11154-017-9432-1.

    Article  PubMed  Google Scholar 

  64. Merola E, Rinke A, Partelli S, Gress TM, Andreasi V, Kollar A, et al. Surgery with radical intent: is there an indication for G3 neuroendocrine neoplasms? Ann Surg Oncol. 2020;27(5):1348–55. https://doi.org/10.1245/s10434-019-08049-5.

    Article  PubMed  Google Scholar 

  65. Merola E, Falconi M, Rinke A, Staettner S, Krendl F, Partelli S, et al. Radical intended surgery for highly selected stage IV neuroendocrine neoplasms G3. Am J Surg. 2020;220(2):284–9. https://doi.org/10.1016/j.amjsurg.2020.03.009.

    Article  PubMed  Google Scholar 

  66. Weber MM, Fottner C. Immune checkpoint inhibitors in the treatment of patients with neuroendocrine neoplasia. Oncol Res Treat. 2018;41(5):306–12. https://doi.org/10.1159/000488996.

    Article  PubMed  Google Scholar 

  67. Katz SC, Donkor C, Glasgow K, Pillarisetty VG, Gonen M, Espat NJ, et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases. HPB (Oxford). 2010;12(10):674–83. https://doi.org/10.1111/j.1477-2574.2010.00231.x.

    Article  Google Scholar 

  68. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–82. https://doi.org/10.1200/JCO.2014.59.4358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. da Silva A, Bowden M, Zhang S, Masugi Y, Thorner AR, Herbert ZT, et al. Characterization of the neuroendocrine tumor immune microenvironment. Pancreas. 2018;47(9):1123–9. https://doi.org/10.1097/MPA.0000000000001150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim ST, Ha SY, Lee S, Ahn S, Lee J, Park SH, et al. The impact of PD-L1 expression in patients with metastatic GEP-NETs. J Cancer. 2016;7(5):484–9. https://doi.org/10.7150/jca.13711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cavalcanti E, Armentano R, Valentini AM, Chieppa M, Caruso ML. Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading. Cell Death Dis. 2017;8(8):e3004. https://doi.org/10.1038/cddis.2017.401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bosch F, Bruwer K, Altendorf-Hofmann A, Auernhammer CJ, Spitzweg C, Westphalen CB, et al. Immune checkpoint markers in gastroenteropancreatic neuroendocrine neoplasia. Endocr Relat Cancer. 2019;26(3):293–301. https://doi.org/10.1530/ERC-18-0494.

    Article  PubMed  Google Scholar 

  73. Wang C, Yu J, Fan Y, Ma K, Ning J, Hu Y, et al. The clinical significance of PD-L1/PD-1 expression in gastroenteropancreatic neuroendocrine neoplasia. Ann Clin Lab Sci. 2019;49(4):448–56.

    CAS  PubMed  Google Scholar 

  74. Lamarca A, Nonaka D, Breitwieser W, Ashton G, Barriuso J, McNamara MG, et al. PD-L1 expression and presence of TILs in small intestinal neuroendocrine tumours. Oncotarget. 2018;9(19):14922–38. https://doi.org/10.18632/oncotarget.24464.

    Article  PubMed  PubMed Central  Google Scholar 

  75. •• Cives M, Pelle E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F. The tumor microenvironment in neuroendocrine tumors: biology and therapeutic implications. Neuroendocrinology. 2019;109(2):83–99. https://doi.org/10.1159/000497355 This is an updated review that summarizes the main features of NETs microenvironment and the potential TME-targeting therapeutic options.

    Article  CAS  PubMed  Google Scholar 

  76. Puccini A, Poorman K, Salem ME, Soldato D, Seeber A, Goldberg RM, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clin Cancer Res. 2020;26:5943–51. https://doi.org/10.1158/1078-0432.CCR-20-1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mehnert JM, Bergsland E, O'Neil BH, Santoro A, Schellens JHM, Cohen RB, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer. 2020;126(13):3021–30. https://doi.org/10.1002/cncr.32883.

    Article  CAS  PubMed  Google Scholar 

  78. Strosberg J, Mizuno N, Doi T, Grande E, Delord JP, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase II KEYNOTE-158 study. Clin Cancer Res. 2020;26(9):2124–30. https://doi.org/10.1158/1078-0432.CCR-19-3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang WH, Wang WQ, Gao HL, Yu XJ, Liu L. The tumor immune microenvironment in gastroenteropancreatic neuroendocrine neoplasms. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188311. https://doi.org/10.1016/j.bbcan.2019.188311.

    Article  CAS  PubMed  Google Scholar 

  80. Cives M, Strosberg J. Treatment strategies for metastatic neuroendocrine tumors of the gastrointestinal tract. Curr Treat Options in Oncol. 2017;18(3):14. https://doi.org/10.1007/s11864-017-0461-5.

    Article  Google Scholar 

  81. Iyer RV, Konda B, Fountzilas C, Mukherjee S, Owen D, Attwood K, et al. Multicenter phase 2 trial of nintedanib in advanced nonpancreatic neuroendocrine tumors. Cancer. 2020;126(16):3689–97. https://doi.org/10.1002/cncr.32994.

    Article  CAS  PubMed  Google Scholar 

  82. Cavalcanti E, Ignazzi A, De Michele F, Caruso ML. PDGFRalpha expression as a novel therapeutic marker in well-differentiated neuroendocrine tumors. Cancer Biol Ther. 2019;20(4):423–30. https://doi.org/10.1080/15384047.2018.1529114.

    Article  CAS  PubMed  Google Scholar 

  83. Lopez-Aguiar AG, Postlewait LM, Ethun CG, Zaidi MY, Zhelnin K, Krasinskas A, et al. STAT3 inhibition for gastroenteropancreatic neuroendocrine tumors: potential for a new therapeutic target? J Gastrointest Surg. 2020;24(5):1138–48. https://doi.org/10.1007/s11605-019-04261-6.

    Article  PubMed  Google Scholar 

  84. Dasari A, Phan A, Gupta S, Rashid A, Yeung SC, Hess K, et al. Phase I study of the anti-IGF1R antibody cixutumumab with everolimus and octreotide in advanced well-differentiated neuroendocrine tumors. Endocr Relat Cancer. 2015;22(3):431–41. https://doi.org/10.1530/ERC-15-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Whitt J, Hong WS, Telange RR, Lin CP, Bibb J, Beebe DJ, et al. Non-toxic fragment of botulinum neurotoxin type A and monomethyl auristatin E conjugate for targeted therapy for neuroendocrine tumors. Cancer Gene Ther. 2020;27:898–909. https://doi.org/10.1038/s41417-020-0167-x.

    Article  PubMed  Google Scholar 

  86. Harney AS, Karagiannis GS, Pignatelli J, Smith BD, Kadioglu E, Wise SC, et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2(Hi) macrophages in breast cancer and pancreatic neuroendocrine tumors. Mol Cancer Ther. 2017;16(11):2486–501. https://doi.org/10.1158/1535-7163.MCT-17-0241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krug S, Abbassi R, Griesmann H, Sipos B, Wiese D, Rexin P, et al. Therapeutic targeting of tumor-associated macrophages in pancreatic neuroendocrine tumors. Int J Cancer. 2018;143(7):1806–16. https://doi.org/10.1002/ijc.31562.

    Article  CAS  PubMed  Google Scholar 

  88. Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting CD73 to augment cancer immunotherapy. Curr Opin Pharmacol. 2020;53:66–76. https://doi.org/10.1016/j.coph.2020.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ono K, Shiozawa E, Ohike N, Fujii T, Shibata H, Kitajima T, et al. Immunohistochemical CD73 expression status in gastrointestinal neuroendocrine neoplasms: A retrospective study of 136 patients. Oncol Lett. 2018;15(2):2123–30. https://doi.org/10.3892/ol.2017.7569.

    Article  CAS  PubMed  Google Scholar 

  90. Katsuta E, Tanaka S, Mogushi K, Shimada S, Akiyama Y, Aihara A, et al. CD73 as a therapeutic target for pancreatic neuroendocrine tumor stem cells. Int J Oncol. 2016;48(2):657–69. https://doi.org/10.3892/ijo.2015.3299.

    Article  CAS  PubMed  Google Scholar 

  91. Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011;144(6):986–98. https://doi.org/10.1016/j.cell.2011.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68. https://doi.org/10.1038/nrg2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Filetti S. Medicine in the era of network science. Endocrine. 2019;66(3):433–4. https://doi.org/10.1007/s12020-019-02139-w.

    Article  CAS  PubMed  Google Scholar 

  94. Kidd M, Modlin IM, Drozdov I. Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics. 2014;15:595. https://doi.org/10.1186/1471-2164-15-595.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Falcone R, Conte F, Fiscon G, Pecce V, Sponziello M, Durante C, et al. BRAF(V600E)-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine. 2019;64(2):406–13. https://doi.org/10.1007/s12020-019-01890-4.

    Article  CAS  PubMed  Google Scholar 

  96. Chen P, Wang Q, Xie J, Kwok HF. Signaling networks and the feasibility of computational analysis in gastroenteropancreatic neuroendocrine tumors. Semin Cancer Biol. 2019;58:80–9. https://doi.org/10.1016/j.semcancer.2019.04.005.

    Article  PubMed  Google Scholar 

  97. Drozdov I, Svejda B, Gustafsson BI, Mane S, Pfragner R, Kidd M, et al. Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia. PLoS One. 2011;6(8):e22457. https://doi.org/10.1371/journal.pone.0022457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26(13):2124–30. https://doi.org/10.1200/JCO.2007.15.2553.

    Article  CAS  PubMed  Google Scholar 

  99. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73. https://doi.org/10.1677/ERC-09-0078.

    Article  CAS  PubMed  Google Scholar 

  100. Bodei L, Schoder H, Baum RP, Herrmann K, Strosberg J, Caplin M, et al. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol. 2020;21(9):e431–e43. https://doi.org/10.1016/S1470-2045(20)30323-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaudenzi G, Dicitore A, Carra S, Saronni D, Pozza C, Giannetta E, et al. MANAGEMENT OF ENDOCRINE DISEASE: Precision medicine in neuroendocrine neoplasms: an update on current management and future perspectives. Eur J Endocrinol. 2019;181(1):R1–R10. https://doi.org/10.1530/EJE-19-0021.

    Article  CAS  PubMed  Google Scholar 

  102. Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord. 2019;20(3):333–51. https://doi.org/10.1007/s11154-019-09508-w.

    Article  CAS  PubMed  Google Scholar 

  103. Modlin IM, Drozdov I, Kidd M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS One. 2013;8(5):e63364. https://doi.org/10.1371/journal.pone.0063364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. •• Malczewska A, Kos-Kudla B, Kidd M, Drozdov I, Bodei L, Matar S, et al. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci. 2020;65(1):18–29. https://doi.org/10.1016/j.advms.2019.10.002 This is the first study that collected and analyzed published data on the NETest, proving its clinical utility in NETs diagnosis and management.

    Article  PubMed  Google Scholar 

Download references

Funding

This article was partly supported by a grant from the Department of Medicine of the University of Padua (SID 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fassan MD PhD.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroendocrine Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borga, C., Businello, G., Murgioni, S. et al. Treatment personalization in gastrointestinal neuroendocrine tumors. Curr. Treat. Options in Oncol. 22, 29 (2021). https://doi.org/10.1007/s11864-021-00825-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00825-4

Keywords

Navigation