Skip to main content

Advertisement

Log in

The Benefits of Olanzapine in Palliating Symptoms

  • Palliative and Supportive Care (MP Davis, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Olanzapine has become a major drug in the management of chemotherapy-induced nausea and vomiting as a prophylactic agent. In addition, a recent randomized trial has demonstrated its benefits in treating nausea and vomiting associated with advanced cancer. The added benefit to olanzapine is that it also stimulates appetite. As a result, since it treats multiple symptoms associated with advanced cancer, it is likely to become the antiemetic of choice in palliative care at least in the USA. The added benefit of treating insomnia and the avoidance of benzodiazepines should place olanzapine in at the top of the list of drugs to use for patients who do complain of insomnia. There is no good evidence that it potentiates the respiratory depression of opioids unlike benzodiazepines. The evidence is weak that olanzapine in as an adjuvant analgesic. Hopefully, future trials will explore this in greater depth. The benefits of adding olanzapine to potent opioids are that it may reduce craving, drug cues, and opioid misuse. Other symptoms like anxiety and depression may be addressed by the addition of olanzapine to standard antidepressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Homsi J, Walsh D, Rivera N, Rybicki LA, Nelson KA, Legrand SB, et al. Symptom evaluation in palliative medicine: patient report vs systematic assessment. Support Care Cancer. 2006;14(5):444–53.

    Article  PubMed  Google Scholar 

  2. Harder S, Herrstedt J, Isaksen J, Neergaard MA, Frandsen K, Sigaard J, et al. The nature of nausea: prevalence, etiology, and treatment in patients with advanced cancer not receiving antineoplastic treatment. Support Care Cancer. 2019;27(8):3071–80.

    Article  PubMed  Google Scholar 

  3. Wickham RJ. Nausea and vomiting: a palliative care imperative. Curr Oncol Rep. 2020;22(1):1.

    Article  PubMed  Google Scholar 

  4. • Sanger GJ, Andrews PLR. A history of drug discovery for treatment of nausea and vomiting and the implications for future research. Front Pharmacol. 2018;9:913. https://doi.org/10.3389/fphar.2018.00913 This is a wonderful review on antiemetics which has clinical implications. This is the first author’s recommendation as an important paper to read.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95 This paper helped to define cancer cachexia.

    Article  PubMed  Google Scholar 

  6. Davis MP, Khoshknabi D, Walsh D, Lagman R, Platt A. Insomnia in patients with advanced cancer. Am J Hosp Palliat Care. 2014;31(4):365–73.

    Article  PubMed  Google Scholar 

  7. Meghani SH, Wool J, Davis J, Yeager KA, Mao JJ, Barg FK. When patients take charge of opioids: self-management concerns and practices among cancer outpatients in the context of opioid crisis. J Pain Symptom Manag. 2020;59(3):618–25.

    Article  Google Scholar 

  8. Makhlouf SM, Pini S, Ahmed S, Bennett MI. Managing pain in people with cancer-a systematic review of the attitudes and knowledge of professionals, patients, caregivers and public. J Cancer Educ. 2020;35(2):214–40.

    Article  PubMed  Google Scholar 

  9. Gregoire S, Lamore K, Laurence V, Silva Moura D, Marec-Berard P, Leprince T, et al. Coping strategies and factors related to problematic substance use and behavioral addictions among adolescents and young adults with cancer. J Adolescent Young Adult Oncol. 2020. https://doi.org/10.1089/jayao.2019.017.

  10. Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23:65–73.

    Article  CAS  PubMed  Google Scholar 

  11. Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, Truex LL, et al. Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha1-adrenergic receptors in vitro. Schizophr Res. 1999;37:107–22.

    Article  CAS  PubMed  Google Scholar 

  12. •• Bymaster FP, Falcone JF, Bauzon D, Kennedy JS, Schenck K, DeLapp NW, et al. Potent antagonism of 5-HT3 and 5-HT6 receptors by olanzapine. Eur J Pharmacol. 2001;430:341–9 The two above references are major works in the pharmacodynamics of olanzapine, but see Table 1 for a summary of data by these and other authors for the human.

    Article  CAS  PubMed  Google Scholar 

  13. Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, et al. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neurosci. 1999;91:599–606.

    Article  CAS  Google Scholar 

  14. Roth BL, Driscol J. “PDSP Ki database”. Psychoactive drug screening program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health https://pdsp.unc.edu/databases/pdsp.php. Accessed 27 April 2020

  15. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, et al. Characterization of 5-HT3c, 5-HT3d and 5-HT3e receptor subunits: evolution, distribution and function. J Neurochem. 2009;108:384–96.

    Article  CAS  PubMed  Google Scholar 

  16. Fan L, Zhang L, Zheng H, Cheng J, Hu Y, Liu J, et al. Pharmacokinetics and bioequivalence of 2 olanzapine orally disintegrating tablet products in healthy Chinese subjects under fed and fasting conditions. Clin Pharmacol Drug Dev. 2020. https://doi.org/10.1002/cpdd.765.

  17. Markowitz JS, DeVane CL, Malcolm RJ, Gefroh HA, Wang JS, Zhu HJ, et al. Pharmacokinetics of olanzapine after single-dose oral administration of standard tablet versus normal and sublingual administration of an orally disintegrating tablet in normal volunteers. J Clin Pharmacol. 2006;46(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  18. Cole JB, Moore JC, Dolan BJ, O'Brien-Lambert A, Fryza BJ, Miner JR, et al. A prospective observational study of patients receiving intravenous and intramuscular olanzapine in the emergency department. Ann Emerg Med. 2017;69(3):327–36 e2.

    Article  PubMed  Google Scholar 

  19. Chan EW, Knott JC, Taylor DM, Phillips GA, Kong DC. Intravenous olanzapine--another option for the acutely agitated patient? Emerg Med Australas. 2009;21(3):241–2.

    PubMed  Google Scholar 

  20. Elsayem A, Bush SH, Munsell MF, Curry E 3rd, Calderon BB, Paraskevopoulos T, et al. Subcutaneous olanzapine for hyperactive or mixed delirium in patients with advanced cancer: a preliminary study. J Pain Symptom Manag. 2010;40(5):774–82.

    Article  CAS  Google Scholar 

  21. Matsumoto K, Kimura S, Takahashi K, Yokoyama Y, Miyazawa M, Kushibiki S, et al. Pharmaceutical studies on and clinical application of olanzapine suppositories prepared as a hospital preparation. J Pharm Health Care Sci. 2016;2:20. https://doi.org/10.1186/s40780-016-0055-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37:177–93.

    Article  CAS  PubMed  Google Scholar 

  23. Mauri MC, Paletta S, Di Pace C, Reggiori A, Cirnigliaro G, Valli I, et al. Clinical pharmacokinetics of atypical antipsychotics: an update. Clin Pharmacokinet. 2018;57:1493–528.

    Article  CAS  PubMed  Google Scholar 

  24. Miroshnichenko II, Pozhidaev IV, Ivanova SA, Baymeeva NV. Therapeutic drug monitoring of olanzapine and cytochrome P450 genotyping in non-smoking subjects. Ther Drug Monit. 2020;42(2):325–9.

    Article  CAS  PubMed  Google Scholar 

  25. Soderberg MM, Haslemo T, Molden E, Dahl ML. Influence of CYP1A1/CYP1A2 and AHR polymorphisms on systemic olanzapine exposure. Pharmacogenet Genomics. 2013;23(5):279–85.

    Article  PubMed  CAS  Google Scholar 

  26. Korprasertthaworn P, Polasek TM, Sorich MJ, McLachlan AJ, Miners JO, Tucker GT, et al. In vitro characterization of the human liver microsomal kinetics and reaction phenotyping of olanzapine metabolism. Drug Metab Dispos. 2015;43(11):1806–14.

    Article  CAS  PubMed  Google Scholar 

  27. Jovanovic M, Vucicevic K, Miljkovic B. Understanding variability in the pharmacokinetics of atypical antipsychotics - focus on clozapine, olanzapine and aripiprazole population models. Drug Metab Rev. 2020;52(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  28. Djordjevic N, Radmanovic B, Cukic J, Baskic D, Djukic-Dejanovic S, Milovanovic D, et al. Cigarette smoking and heavy coffee consumption affecting response to olanzapine: the role of genetic polymorphism. World J Biol Psychiatry. 2020;21(1):29–52.

    Article  PubMed  Google Scholar 

  29. Czerwensky F, Leucht S, Steimer W. CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations. Ther Drug Monit. 2015;37(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  30. Ring BJ, Binkley SN, Vandenbranden M, Wrighton SA. In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C9, CYP2C19, CYP2D6 and CYP3A. Br J Clin Pharmacol. 1996;41:181–6.

    Article  CAS  PubMed  Google Scholar 

  31. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, et al. Receptor occupancy and brain free fraction. Drug Metab Dispos. 2009;37:753–60.

    Article  CAS  PubMed  Google Scholar 

  32. Solmi M, Murru A, Pacchiarotti I, Undurraga J, Veronese N, Fornaro M, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag. 2017;29(13):757–77.

    Article  Google Scholar 

  33. Sykes DA, Moore H, Stott L, Holliday N, Javitch JA, Lane JR, et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun. 2017;8:763. https://doi.org/10.1038/s41467-017-00716-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bagdy G. Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. Behav Brain Res. 1996;73:277–80.

    Article  CAS  PubMed  Google Scholar 

  35. Reynolds GP. Receptor mechanisms of antipsychotic drug action in bipolar disorder – focus on asenapine. Ther Adv Psychopharmacol. 2011;1(6):197–204. https://doi.org/10.1177/2045125311430112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nicholson AN, Pascoe PA, Turner C, Ganellin CR, Greengrass PM, Casy AF, et al. Sedation and histamine H1-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene. Br J Pharmacol. 1991;104:270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg SA, Ernsberger P, et al. H1-Histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacol. 2003;28:519–26.

    Article  CAS  Google Scholar 

  38. Wallace TJM, Zai CC, Brandl EJ, Müller DJ. Role of 5-HT2C receptor gene variants in antipsychotic-induced weight gain. Pharmgenomics Pers Med. 2011;4:83–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lord CC, Wyler SC, Wan R, Castorena CM, Ahmed N, Mathew D, et al. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J Clin Invest. 2017;127:3402–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. He M, Zhang Q, Deng C, Jin T, Song X, Wang H, et al. Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity. Psychoneuroendocrinol. 2017;85:190–9.

    Article  CAS  Google Scholar 

  41. Abrams P, Andersson K-E, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148:565–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takatani T, Ito J, Matsuoka I, Sasa M, Takaori S. Effects of diphenhydrmaine iontophoretically applied onto neurons in the medial and lateral vestibular nuclei. Jpn J Pharmacol. 1983;33:557–61.

    Article  CAS  PubMed  Google Scholar 

  43. Soto E, Vega R. Neuropharmacology of vestibular system disorders. Curr Neuropharmacol. 2010;8:26–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tu L, Lu Z, Dieser K, Schmitt C, Chan SW, Ngan MP, et al. Brain activation by H1 antihistamines challenges conventional view of their mechanism of action in motion sickness: A behavioral, c-Fos and physiological study in Suncus murinus (House Musk Shrew). Front Physiol. 2017;8:412. https://doi.org/10.3389/fphys.2017.00412.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sanger GJ, Andrews PLR. A history of drug discovery for treatment of nausea and vomiting and the implications for future research. Front Pharmacol. 2018;9:913. https://doi.org/10.3389/fphar.2018.00913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Price CJ, Hoyda TD, Ferguson AV. The Area Postrema: A brain monitor and integrator of systemic autonomic state. Neuroscientist. 2008;14:182–94.

    Article  PubMed  Google Scholar 

  47. Schwartz J-C, Agid Y, Bouthenet M-L, Javoy-Agid F, Llorens-Cortes C, Martres M-P, et al. Neurochemical investigations into the human area postrema. In: Davis CJ, Lake-Bakaar GV, Grahame-Smith DG, editors. Nausea and Vomiting: Mechanisms and Treatment. Berlin: Springer-Verlag; 1986. p. 18–30.

    Chapter  Google Scholar 

  48. Hyde TM, Knable MB, Murray AM. Distribution of dopamine D1-D4 receptor subtypes in human dorsal vagal complex. Synapse. 1996;24:224–32.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida N, Yoshikawa T, Hosoki K. A dopamine D3 receptor agonist, 7-OH-DPAT, causes vomiting in the dog. Life Sci. 1995;57:PL347–50.

    CAS  PubMed  Google Scholar 

  50. Yoshikawa T, Yoshida N, Hosoki K. Involvement of dopamine D3 receptors in the area postrema in R(+)-7-OH-DPAT-induced emesis in the ferret. Eur J Pharmacol. 1996;301:143–9.

    Article  CAS  PubMed  Google Scholar 

  51. Darmani NA, Zhao W, Ahmad B. The role of D2 and D3 dopamine receptors in the mediation of emesis in Cryptotis parva (the least shrew). J Neural Transm. 1999;106:1045–61.

    Article  CAS  PubMed  Google Scholar 

  52. Osinski MA, Uchic ME, Seifert T, Shaughnessy TK, Miller LN, Nakane M, et al. Dopamine D2, but not D4, receptor agonists are emetogenic in ferrets. Pharmacol Biochem Behav. 2005;81:211–9.

    Article  CAS  PubMed  Google Scholar 

  53. Andrews PLR, Sanger GJ. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr Opin Pharmacol. 2002;2:650–6.

    Article  CAS  PubMed  Google Scholar 

  54. Parvez SH, Minami M, Caudy P, Endo T, Parvez S, Hirafuju M, et al. Neurochemical markers of emesis induced by anti-cancer drugs: Role of central mechanisms. Neuroendocrinol Lett. 1997;18:85–102.

    CAS  Google Scholar 

  55. Rudd JA, Andrews PLR. Mechanisms of acute, delayed, and anticipatory emesis induced by anticancer therapies. In: Hesketh PJ, editor. Management of nausea and vomiting in cancer and cancer treatment. Sudbury: Jones and Bartlett; 2005. p. 15–65.

    Google Scholar 

  56. Browning KN. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology. Front Neurosci. 2015;9:413. https://doi.org/10.3389/fnins.2015.00413.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shram MJ, Schoedel KA, Bartlett C, Shazer RL, Anderson CM, Sellers EM. Evaluation of the abuse potential evaluation of lorcaserin, a serotonin 2C (5-HT2C) receptor agonist, in recreational polydrug users. Clin Pharmacol Ther. 2011;89:683–92.

    Article  CAS  PubMed  Google Scholar 

  58. Higgins GA, Silenieks LB, Patrick A, De Lannoy IAM, Fletcher PJ, Parker LA, et al. Studies to examine potential tolerability differences between the 5-HT2C receptor selective agonists lorcaserin and CP-809101. ACS Chem Neurosci. 2017;8:1074–84.

    Article  CAS  PubMed  Google Scholar 

  59. Farmer AD, Ban VF, Coen SJ, Sanger GJ, Barker GJ, Gresty MA, et al. Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. J Physiol. 2015;593(5):1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomized, double-blind, phase 3 trials. Lancet Oncol. 2016;17:519–31.

    Article  CAS  PubMed  Google Scholar 

  61. Lembo A, Camilleri M, McCallum R, Sastre R, Breton C, Spence S, et al. RM-131-004 Trial Group. Relamorelin reduces vomiting frequency and severity and accelerates gastric emptying in adults with diabetic gastroparesis. Gastroenterol. 2016;151:87–96.

    Article  CAS  Google Scholar 

  62. Liu YL, Malik NM, Sanger GJ, Andrews PL. Ghrelin alleviates cancer chemotherapy-associated dyspepsia in rodents. Cancer Chemother Pharmacol. 2006;58:326–33.

    Article  CAS  PubMed  Google Scholar 

  63. Rudd JA, Chan SW, Ngan MP, Tu L, Lu Z, Giuliano C, et al. Anti-emetic action of the brain-penetrating new ghrelin agonist, HM01, alone and in combination with the 5-HT3 antagonist, palonosetron and with the NK1 antagonist, netupitant, against cisplatin- and motion-induced emesis in Suncus murinus (house musk shrew). Front Pharmacol. 2018;9:869. https://doi.org/10.3389/fphar.2018.00869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rudd JA, Ngan MP, Wai MK, King AG, Witherington J, Andrews PLR, et al. Anti-emetic activity of ghrelin in ferrets exposed to the cytotoxic anti-cancer agent cisplatin. Neurosci Lett. 2006;392:79–83.

    Article  CAS  PubMed  Google Scholar 

  65. Takeda H, Sadakane C, Hattori T, Katsurada T, Ohkawara T, Nagai K, et al. Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism. Gastroenterol. 2008;134:2004–13.

    Article  Google Scholar 

  66. Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WEPA, et al. Ghrelin’s orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci. 2015;6:1186–97.

    Article  CAS  PubMed  Google Scholar 

  67. Schellekens H, van Oeffelen WE, Dinan TG, Cryan JF. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem. 2013;288:181–91.

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Yu Y, Zheng P, Jin T, He M, Zheng M, et al. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the hypothalamic neurons of mice. Psychoneuroendocrinol. 2020;114:104594.

    Article  CAS  Google Scholar 

  69. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron. 2012;73:317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miura T, Mitsunaga S, Ikeda M, Ohno I, Takahashi H, Suzuki H, et al. Characterization of low active ghrelin ratio in patients with advanced pancreatic cancer. Support Care Cancer. 2018;26(11):3811–7.

    Article  PubMed  Google Scholar 

  71. Wu TH, Chiu CC, Goh KK, Chen PY, Huang MC, Chen CH, et al. Relationship between metabolic syndrome and acylated/desacylated ghrelin ratio in patients with schizophrenia under olanzapine medication. J Psychopharmacol. 2020;34(1):86–92.

    Article  PubMed  Google Scholar 

  72. Tagami K, Kashiwase Y, Yokoyama A, Nishimura H, Miyano K, Suzuki M, et al. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor. Neuropeptides. 2016;58:93–101.

    Article  CAS  PubMed  Google Scholar 

  73. Johnston KD, Lu Z, Rudd JA. Looking beyond 5-HT3 receptors: a review of the wider role of serotonin in the pharmacology of nausea and vomiting. Eur J Pharmacol. 2014;722:13–25.

    Article  CAS  PubMed  Google Scholar 

  74. • Greenough A, Cole G, Lewis J, Lockton A, Blundell J. Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiol Behav. 1998;65:303–10 Begins to link changes in appetite and nausea together, further exemplified by the next two citations.

    Article  CAS  PubMed  Google Scholar 

  75. Sanger GJ, Lee K. Hormones of the gut-brain axis as targets for the treatment of upper GI disorders. Nat Rev Drug Discov. 2008;7:241–54.

    Article  CAS  PubMed  Google Scholar 

  76. Sanger GJ, Furness JB. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol. 2016;13:38–48.

    Article  CAS  PubMed  Google Scholar 

  77. Huang XF, Weston-Green K, Yu Y. Decreased 5-HT2cR and GHSR1a interaction in antipsychotic drug-induced obesity. Obes Rev. 2018;19:396–405. https://doi.org/10.1111/obr.12638.

    Article  CAS  PubMed  Google Scholar 

  78. Itoh Y. A possible role for ghrelinergic stimulation through blockade of 5-HT2B/5-HT2C receptors in antiemetic action of olanzapine. J Transl Sci. 2019;5. https://doi.org/10.15761/JTS.1000300.

  79. • Pasricha PJ, Snape W. Toward a better drug for gastroparesis: the problem with a moving target. Gastroenterol. 2016;151:20–2 Questions the relationship between ghrelin and nausea.

    Article  Google Scholar 

  80. Jabaley CS, Gray DW, Budhrani GS, Lynde GC, Adamopoulos P, Easton GS, et al. Chronic atypical antipsychotic use is associated with reduced need for postoperative nausea and vomiting rescue in the postanesthesia care unit: a propensity-matched retrospective observational study. Anesth Analg. 2020;130(1):141–50.

    Article  PubMed  Google Scholar 

  81. Hyman JB, Park C, Lin HM, Cole B, Rosen L, Fenske SS, et al. Olanzapine for the prevention of postdischarge nausea and vomiting after ambulatory surgery: a randomized controlled trial. Anesthesiol. 2020;132(6):1419–28.

    Article  Google Scholar 

  82. •• Navari RM. Nausea and vomiting in advanced cancer. Curr Treat Options in Oncol. 2020;21(2):14 This is an excellent review on nausea and vomiting in advanced cancer.

    Article  Google Scholar 

  83. Hashimoto H, Abe M, Tokuyama O, Mizutani H, Uchitomi Y, Yamaguchi T, et al. Olanzapine 5 mg plus standard antiemetic therapy for the prevention of chemotherapy-induced nausea and vomiting (J-FORCE): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(2):242–9.

    Article  CAS  PubMed  Google Scholar 

  84. Yokoe T, Hayashida T, Nagayama A, Nakashoji A, Maeda H, Seki T, et al. Effectiveness of antiemetic regimens for highly emetogenic chemotherapy-induced nausea and vomiting: a systematic review and network meta-analysis. Oncologist. 2019;24(6):e347–e57.

    Article  CAS  PubMed  Google Scholar 

  85. Warr D. Bringing it all together in the treatment of CINV: application of current knowledge into routine clinical practice. Support Care Cancer. 2018;26(Suppl 1):29–33.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yeo W, Chan VTC, Li L, Lau TKH, Lai KT, Pang E, et al. Dataset on chemotherapy-induced nausea and vomiting (CINV) and quality of life (QOL) during multiple chemotherapy cycles among a Chinese breast cancer patient population who were randomized to antiemetic regimens with or without olanzapine. Data Brief. 2020;30:105421.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ithimakin S, Theeratrakul P, Laocharoenkiat A, Nimmannit A, Akewanlop C, Soparattanapaisarn N, et al. Randomized, double-blind, placebo-controlled study of aprepitant versus two dosages of olanzapine with ondansetron plus dexamethasone for prevention of chemotherapy-induced nausea and vomiting in patients receiving high-emetogenic chemotherapy. Support Care Cancer. 2020;28:5335–42.

    Article  PubMed  Google Scholar 

  88. Zhou J-G, Huang L, Jin S-H, et al. Olanzapine combined with 5-hydroxytryptamine type 3 receptor antagonist (5-HT3 RA) plus dexamethasone for prevention and treatment of chemotherapy-induced nausea and vomiting in high and moderate emetogenic chemotherapy: a systematic review and meta-analysis of randomised controlled trials. ESMO Open 2020;5:e000621. https://doi.org/10.1136/esmoopen-2019-000621.

  89. Yeo W, Lau TK, Li L, Lai KT, Pang E, Cheung M, et al. A randomized study of olanzapine-containing versus standard antiemetic regimens for the prevention of chemotherapy-induced nausea and vomiting in Chinese breast cancer patients. Breast. 2020;50:30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Monson T, Greer D, Kreikemeier E, Liewer S. Olanzapine as a rescue antiemetic in hematopoietic stem cell transplant. J Oncol Pharm Pract. 2020;26(4):918–22.

    Article  CAS  PubMed  Google Scholar 

  91. Trifilio S, Welles C, Seeger K, Mehta S, Fishman M, McGowan K, et al. Olanzapine reduces chemotherapy-induced nausea and vomiting compared with aprepitant in myeloma patients receiving high-dose melphalan before stem cell transplantation: a retrospective study. Clin Lymphoma Myeloma Leuk. 2017;17(9):584–9.

    Article  PubMed  Google Scholar 

  92. Alhifany AA, McBride A, Almutairi AR, Cheema E, Shahbar A, Alatawi Y, et al. Efficacy of olanzapine, neurokinin-1 receptor antagonists, and thalidomide in combination with palonosetron plus dexamethasone in preventing highly emetogenic chemotherapy-induced nausea and vomiting: a Bayesian network meta-analysis. Support Care Cancer. 2020;28(3):1031–9.

    Article  PubMed  Google Scholar 

  93. Zhang Z, Zhang Y, Chen G, Hong S, Yang Y, Fang W, et al. Olanzapine-based triple regimens versus neurokinin-1 receptor antagonist-based triple regimens in preventing chemotherapy-induced nausea and vomiting associated with highly emetogenic chemotherapy: a network meta-analysis. Oncologist. 2018;23(5):603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang T, Liu Q, Lu M, Ma L, Zhou Y, Cui Y. Efficacy of olanzapine for the prophylaxis of chemotherapy-induced nausea and vomiting: a meta-analysis. Br J Clin Pharmacol. 2017;83(7):1369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chiu L, Chow R, Popovic M, Navari RM, Shumway NM, Chiu N, et al. Efficacy of olanzapine for the prophylaxis and rescue of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis. Support Care Cancer. 2016;24(5):2381–92.

    Article  PubMed  Google Scholar 

  96. Navari RM. Treatment of breakthrough and refractory chemotherapy-induced nausea and vomiting. Biomed Res Int. 2015;2015:595894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Navari RM, Loprinzi CL. Olanzapine for chemotherapy-induced nausea and vomiting. N Engl J Med. 2016;375(14):1396.

    Article  PubMed  Google Scholar 

  98. Navari RM, Qin R, Ruddy KJ, Liu H, Powell SF, Bajaj M, et al. Olanzapine for the prevention of chemotherapy-induced nausea and vomiting. N Engl J Med. 2016;375(2):134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Molassiotis A. Time to re-think the olanzapine dose. Lancet Oncol. 2020;21(2):189–90.

    Article  PubMed  Google Scholar 

  100. MacIntosh D. Olanzapine in the management of difficult to control nausea and vomiting in a palliative care population: a case series. J Palliat Med. 2016;19:87–90.

    Article  Google Scholar 

  101. Navari RM, Loprinzi CL. Olanzapine is an effective antiemetic agent. Ann Palliat Med. 2020;9(3):628–30.

    Article  PubMed  Google Scholar 

  102. •• Navari RM, Pywell CM, Le-Rademacher JG, White P, Dodge AB, Albany C, et al. Olanzapine for the treatment of advanced cancer-related chronic nausea and/or vomiting: a randomized pilot trial. JAMA Oncol. 2020;6(6):895–899. https://doi.org/10.1001/jamaoncol.2020.1052. 2020; This is an important randomized trial demonstrating the benefits of olanzapine as an antiemetic in advanced cancer.

  103. Hardy JR, Skerman H, Philip J, Good P, Currow DC, Mitchell G, et al. Methotrimeprazine versus haloperidol in palliative care patients with cancer-related nausea: a randomised, double-blind controlled trial. BMJ Open. 2019;9(9):e029942.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hardy J, Skerman H, Glare P, Philip J, Hudson P, Mitchell G, et al. A randomized open-label study of guideline-driven antiemetic therapy versus single agent antiemetic therapy in patients with advanced cancer and nausea not related to anticancer treatment. BMC Cancer. 2018;18(1):510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bruera E, Belzile M, Neumann C, Harsanyi Z, Babul N, Darke A. A double-blind, crossover study of controlled-release metoclopramide and placebo for the chronic nausea and dyspepsia of advanced cancer. J Pain Symptom Manag. 2000;19(6):427–35.

    Article  CAS  Google Scholar 

  106. Martino D, Karnik V, Osland S, Barnes TRE, Pringsheim TM. Movement disorders associated with antipsychotic medication in people with schizophrenia: an overview of Cochrane reviews and meta-analysis. The Canadian Journal of Psychiatry / La Revue Canadienne de Psychiatrie 2018:63(11):730–739.

  107. Aronow WS, Shamliyan TA. Effects of atypical antipsychotic drugs on QT interval in patients with mental disorders. Ann Transl Med. 2018;6:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ozeki Y, Fujii K, Kurimoto N, Yamada N, Okawa M, Aoki T, et al. QTc prolongation and antipsychotic medications in a sample of 1017 patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):401–5.

    Article  CAS  PubMed  Google Scholar 

  109. • Saudemont G, Prod'Homme C, Da Silva A, Villet S, Reich M, Penel N, et al. The use of olanzapine as an antiemetic in palliative medicine: a systematic review of the literature. BMC Palliat Care. 2020;19(1):56 A recent systematic review of the antiemetic activity of olanzapine in advanced cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaneishi K, Kawabata M, Morita T. Olanzapine for the relief of nausea in patients with advanced cancer and incomplete bowel obstruction. J Pain Symptom Manag. 2012;44(4):604–7.

    Article  CAS  Google Scholar 

  111. Suzuki M, Komuro K, Ohara K. Olanzapine and betamethasone are effective for the treatment of nausea and vomiting due to metastatic brain tumors of rectal cancer. Case Rep Gastroenterol. 2014;8(1):13–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jackson WC, Tavernier L. Olanzapine for intractable nausea in palliative care patients. J Palliat Med. 2003;6(2):251–5.

    Article  PubMed  Google Scholar 

  113. Shinjo T, Okada M. Olanzapine use in cancer patients for refractory vomiting. Gan To Kagaku Ryoho. 2006;33(3):349–52.

    CAS  PubMed  Google Scholar 

  114. Okamoto H, Shono K, Nozaki-Taguchi N. Low-dose of olanzapine has ameliorating effects on cancer-related anorexia. Cancer Manag Res. 2019;11:2233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naing A, Dalal S, Abdelrahim M, Wheler J, Hess K, Fu S, et al. Olanzapine for cachexia in patients with advanced cancer: an exploratory study of effects on weight and metabolic cytokines. Support Care Cancer. 2015;23(9):2649–54.

    Article  PubMed  Google Scholar 

  116. Lazenby JM, Saif MW. Palliative care from the beginning of treatment for advanced pancreatic cancer. Highlights from the “2010 ASCO Gastrointestinal Cancers Symposium”. Orlando, FL, USA. January 22-24, 2010. JOP. 2010;11(2):154–7.

    PubMed  Google Scholar 

  117. Navari RM, Brenner MC. Treatment of cancer-related anorexia with olanzapine and megestrol acetate: a randomized trial. Support Care Cancer. 2010;18(8):951–6.

    Article  PubMed  Google Scholar 

  118. Lazowski LK, Townsend B, Hawken ER, Jokic R, du Toit R, Milev R. Sleep architecture and cognitive changes in olanzapine-treated patients with depression: a double blind randomized placebo controlled trial. BMC Psychiatry. 2014;14:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kluge M, Schacht A, Himmerich H, Rummel-Kluge C, Wehmeier PM, Dalal M, et al. Olanzapine and clozapine differently affect sleep in patients with schizophrenia: results from a double-blind, polysomnographic study and review of the literature. Schizophr Res. 2014;152(1):255–60.

    Article  PubMed  Google Scholar 

  120. Monti JM, Torterolo P, Pandi Perumal SR. The effects of second generation antipsychotic drugs on sleep variables in healthy subjects and patients with schizophrenia. Sleep Med Rev. 2017;33:51–7.

    Article  PubMed  Google Scholar 

  121. Khazaie H, Rezaie L, Darvishi F, Najafi F, Avis K. Treatment of paradoxical insomnia with atypical antipsychotic drugs. A comparison of olanzapine and risperidone. Neurosciences (Riyadh). 2013;18(1):64–9.

    Google Scholar 

  122. Jakovljevic M, Sagud M, Mihaljevic-Peles A. Olanzapine in the treatment-resistant, combat-related PTSD--a series of case reports. Acta Psychiatr Scand. 2003;107(5):394–6.

    Article  CAS  PubMed  Google Scholar 

  123. Moreno RA, Hanna MM, Tavares SM, Wang YP. A double-blind comparison of the effect of the antipsychotics haloperidol and olanzapine on sleep in mania. Braz J Med Biol Res. 2007;40(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  124. Torigoe K, Nakahara K, Rahmadi M, Yoshizawa K, Horiuchi H, Hirayama S, et al. Usefulness of olanzapine as an adjunct to opioid treatment and for the treatment of neuropathic pain. Anesthesiol. 2012;116(1):159–69.

    Article  CAS  Google Scholar 

  125. Schreiber S, Getslev V, Backer MM, Weizman R, Pick CG. The atypical neuroleptics clozapine and olanzapine differ regarding their antinociceptive mechanisms and potency. Pharmacol Biochem Behav. 1999;64(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  126. Gick CL, Mirowski GW, Kennedy JS, Bymaster FP. Treatment of glossodynia with olanzapine. J Am Acad Dermatol. 2004;51(3):463–5.

    Article  PubMed  Google Scholar 

  127. Jimenez XF, Sundararajan T, Covington EC. A systematic review of atypical antipsychotics in chronic pain management: olanzapine demonstrates potential in central sensitization, fibromyalgia, and headache/migraine. Clin J Pain. 2018;34(6):585–91.

    Article  PubMed  Google Scholar 

  128. Silberstein SD, Peres MF, Hopkins MM, Shechter AL, Young WB, Rozen TD. Olanzapine in the treatment of refractory migraine and chronic daily headache. Headache. 2002;42(6):515–8.

    Article  PubMed  Google Scholar 

  129. Gorski ED, Willis KC. Report of three case studies with olanzapine for chronic pain. J Pain. 2003;4(3):166–8.

    Article  PubMed  Google Scholar 

  130. Bi B, Shan L, Zhou D. Combined use of duloxetine and olanzapine in the treatment of urologic chronic pelvic pain syndromes refractory to conventional treatment: a case report. Clin Psychopharmacol Neurosci. 2018;16(1):122–5.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Go SI, Song HN, Lee SJ, Bruera E, Kang JH. Craving behavior from opioid addiction controlled with olanzapine in an advanced cancer patient: a case report. J Palliat Med. 2018;21(9):1367–70.

    Article  PubMed  Google Scholar 

  132. • Khojainova N, Santiago-Palma J, Kornick C, Breitbart W, Gonzales GR. Olanzapine in the management of cancer pain. J Pain Symptom Manag. 2002;23(4):346–50 A case series of patients with rapidly escalating opioid requirements which responded with the addition of olanzapine.

    Article  CAS  Google Scholar 

  133. van der Vorst M, Neefjes ECW, Boddaert MSA, Verdegaal B, Beeker A, Teunissen SCC, et al. Olanzapine versus haloperidol for treatment of delirium in patients with advanced cancer: a phase III randomized clinical trial. Oncologist. 2020;25(3):e570–e7.

    PubMed  Google Scholar 

  134. •• Finucane AM, Jones L, Leurent B, Sampson EL, Stone P, Tookman A, et al. Drug therapy for delirium in terminally ill adults. Cochrane Database Syst Rev. 2020;1:CD004770 This is a systematic review which robustly demonstrates the inability of typical and atypical antipsychotics to alter delirium.

    PubMed  Google Scholar 

  135. Harder SL, Groenvold M, Herrstedt J, Johnsen AT. Nausea in advanced cancer: relationships between intensity, burden, and the need for help. Support Care Cancer. 2019;27(1):265–73.

  136. Yusufov M, Braun IM, Pirl WF. A systematic review of substance use and substance use disorders in patients with cancer. Gen Hosp Psychiatry. 2019;60:128–36.

    Article  PubMed  Google Scholar 

  137. Littlewood RA, Claus ED, Arenella P, Bogenschutz M, Karoly H, Ewing SW, et al. Dose specific effects of olanzapine in the treatment of alcohol dependence. Psychopharmacology (Berlin). 2015;232(7):1261–8.

    Article  CAS  Google Scholar 

  138. Hamilton JD, Nguyen QX, Gerber RM, Rubio NB. Olanzapine in cocaine dependence: a double-blind, placebo-controlled trial. Am J Addict. 2009;18(1):48–52.

    Article  PubMed  Google Scholar 

  139. van Nimwegen LJ, de Haan L, van Beveren NJ, van der Helm M, van den Brink W, Linszen D. Effect of olanzapine and risperidone on subjective well-being and craving for cannabis in patients with schizophrenia or related disorders: a double-blind randomized controlled trial. Can J Psychiatry. 2008;53(6):400–5.

    Article  PubMed  Google Scholar 

  140. Kluge M, Schuld A, Himmerich H, Dalal M, Schacht A, Wehmeier PM, et al. Clozapine and olanzapine are associated with food craving and binge eating: results from a randomized double-blind study. J Clin Psychopharmacol. 2007;27(6):662–6.

    Article  CAS  PubMed  Google Scholar 

  141. Hutchison KE, Ray L, Sandman E, Rutter MC, Peters A, Davidson D, et al. The effect of olanzapine on craving and alcohol consumption. Neuropsychopharmacol. 2006;31(6):1310–7.

    Article  CAS  Google Scholar 

  142. Hutchison KE, Rutter MC, Niaura R, Swift RM, Pickworth WB, Sobik L. Olanzapine attenuates cue-elicited craving for tobacco. Psychopharmacology (Berlin). 2004;175(4):407–13.

    CAS  Google Scholar 

  143. Hutchison KE, Wooden A, Swift RM, Smolen A, McGeary J, Adler L, et al. Olanzapine reduces craving for alcohol: a DRD4 VNTR polymorphism by pharmacotherapy interaction. Neuropsychopharmacol. 2003;28(10):1882–8.

    Article  CAS  Google Scholar 

  144. Hutchison KE, Swift R, Rohsenow DJ, Monti PM, Davidson D, Almeida A. Olanzapine reduces urge to drink after drinking cues and a priming dose of alcohol. Psychopharmacology (Berlin). 2001;155(1):27–34.

    Article  CAS  Google Scholar 

  145. Mohamed S, Rosenheck RA, Lin H, Swartz M, McEvoy J, Stroup S. Randomized trial of the effect of four second-generation antipsychotics and one first-generation antipsychotic on cigarette smoking, alcohol, and drug use in chronic schizophrenia. J Nerv Ment Dis. 2015;203(7):486–92.

    Article  PubMed  Google Scholar 

  146. Akerele E, Levin FR. Comparison of olanzapine to risperidone in substance-abusing individuals with schizophrenia. Am J Addict. 2007;16(4):260–8.

    Article  PubMed  Google Scholar 

  147. Potvin S, Stip E, Roy JY. Clozapine, quetiapine and olanzapine among addicted schizophrenic patients: towards testable hypotheses. Int Clin Psychopharmacol. 2003;18(3):121–32.

    PubMed  Google Scholar 

  148. Bedard AM, Maheux J, Levesque D, Samaha AN. Prior haloperidol, but not olanzapine, exposure augments the pursuit of reward cues: implications for substance abuse in schizophrenia. Schizophr Bull. 2013;39(3):692–702.

    Article  PubMed  Google Scholar 

  149. Swartz MS, Wagner HR, Swanson JW, Stroup TS, McEvoy JP, Reimherr F, et al. The effectiveness of antipsychotic medications in patients who use or avoid illicit substances: results from the CATIE study. Schizophr Res. 2008;100(1–3):39–52.

    Article  PubMed  Google Scholar 

  150. Reeves RR. Abuse of olanzapine by substance abusers. J Psychoactive Drugs. 2007;39(3):297–9.

    Article  PubMed  Google Scholar 

  151. Kumsar NA, Erol A. Olanzapine abuse. Subst Abus. 2013;34(1):73–4.

    Article  PubMed  Google Scholar 

  152. Valeriani G, Corazza O, Bersani FS, Melcore C, Metastasio A, Bersani G, et al. Olanzapine as the ideal “trip terminator”? Analysis of online reports relating to antipsychotics' use and misuse following occurrence of novel psychoactive substance-related psychotic symptoms. Hum Psychopharmacol. 2015;30(4):249–54.

    Article  PubMed  Google Scholar 

  153. Cha HJ, Lee HA, Ahn JI, Jeon SH, Kim EJ, Jeong HS. Dependence potential of quetiapine: behavioral pharmacology in rodents. Biomol Ther (Seoul). 2013;21(4):307–12.

    Article  CAS  Google Scholar 

  154. Klein LR, Cole JB, Driver BE, Miner JR, Laes JR, Fagerstrom E, et al. An open-label randomized trial of intramuscular olanzapine versus oral clonidine for symptomatic treatment of opioid withdrawal in the emergency department. Clin Toxicol (Phila). 2019;57(8):697–702.

    Article  CAS  Google Scholar 

  155. Kampman KM, Pettinati H, Lynch KG, Sparkman T, O'Brien CP. A pilot trial of olanzapine for the treatment of cocaine dependence. Drug Alcohol Depend. 2003;70(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  156. Reid MS, Casadonte P, Baker S, Sanfilipo M, Braunstein D, Hitzemann R, et al. A placebo-controlled screening trial of olanzapine, valproate, and coenzyme Q10/L-carnitine for the treatment of cocaine dependence. Addiction. 2005;100(Suppl 1):43–57.

    Article  PubMed  Google Scholar 

  157. Xue X, Song Y, Yu X, Fan Q, Tang J, Chen X. Olanzapine and haloperidol for the treatment of acute symptoms of mental disorders induced by amphetamine-type stimulants: a randomized controlled trial. Medicine (Baltimore). 2018;97(8):e9786.

    Article  CAS  Google Scholar 

  158. Indave BI, Minozzi S, Pani PP, Amato L. Antipsychotic medications for cocaine dependence. Cochrane Database Syst Rev. 2016;3:CD006306.

    PubMed  Google Scholar 

  159. Mechanic JA, Maynard BT, Holloway FA. Treatment with the atypical antipsychotic, olanzapine, prevents the expression of amphetamine-induced place conditioning in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  160. Berk M, Brook S, Trandafir AI. A comparison of olanzapine with haloperidol in cannabis-induced psychotic disorder: a double-blind randomized controlled trial. Int Clin Psychopharmacol. 1999;14(3):177–80.

    Article  CAS  PubMed  Google Scholar 

  161. Egashira N, Ishigami N, Mishima K, Iwasaki K, Oishi R, Fujiwara M. Delta9-Tetrahydrocannabinol-induced cognitive deficits are reversed by olanzapine but not haloperidol in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):499–506.

    Article  CAS  PubMed  Google Scholar 

  162. Guardia J, Segura L, Gonzalvo B, Iglesias L, Roncero C, Cardus M, et al. A double-blind, placebo-controlled study of olanzapine in the treatment of alcohol-dependence disorder. Alcohol Clin Exp Res. 2004;28(5):736–45.

    Article  CAS  PubMed  Google Scholar 

  163. Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des. 2010;16(19):2141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. MacDonald K, Wilson MP, Minassian A, Vilke GM, Perez R, Cobb P, et al. A retrospective analysis of intramuscular haloperidol and intramuscular olanzapine in the treatment of agitation in drug- and alcohol-using patients. Gen Hosp Psychiatry. 2010;32(4):443–5.

    Article  PubMed  Google Scholar 

  165. Kim SH, Han DH, Joo SY, Min KJ. The effect of dopamine partial agonists on the nicotine dependency in patients with schizophrenia. Hum Psychopharmacol. 2010;25(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  166. Rohsenow DJ, Tidey JW, Miranda R, McGeary JE, Swift RM, Hutchison KE, et al. Olanzapine reduces urge to smoke and nicotine withdrawal symptoms in community smokers. Exp Clin Psychopharmacol. 2008;16(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  167. Liu Y, Bao YP, Sun HQ, Beveridge TJ, Li SX, Di XL, et al. Long-term treatment with aripiprazole on the waking and postprandial urges to smoke in Chinese heavy smokers. J Clin Psychopharmacol. 2010;30(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  168. Lofwall MR, Nuzzo PA, Campbell C, Walsh SL. Aripiprazole effects on self-administration and pharmacodynamics of intravenous cocaine and cigarette smoking in humans. Exp Clin Psychopharmacol. 2014;22(3):238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Torigoe K, Mori T, Shibasaki M, Yoshizawa K, Narita M, Suzuki T. Olanzapine suppresses the rewarding and discriminative stimulus effects induced by morphine. Synapse. 2012;66(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  170. Gerra G, Di Petta G, D'Amore A, Iannotta P, Bardicchia F, Falorni F, et al. Combination of olanzapine with opioid-agonists in the treatment of heroin-addicted patients affected by comorbid schizophrenia spectrum disorders. Clin Neuropharmacol. 2007;30(3):127–35.

  171. Kongsamut S, Roehr JE, Cai J, Hartman HB, Weissensee P, Kerman LL, et al. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol. 1996;317:417–23.

    Article  CAS  PubMed  Google Scholar 

  172. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van GP, Lesage AS, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berlin). 1996;124:57–73.

    Article  CAS  Google Scholar 

  173. Wainscott DB, Lucaites VL, Kursar JD, Baez M, Nelson DL. Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences. J Pharmacol Exp Ther. 1996;276:720–7.

    CAS  PubMed  Google Scholar 

  174. Schmidt AW, Lebel LA, Howard HR, Zorn SH. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol. 2001;425:197–201.

    Article  CAS  PubMed  Google Scholar 

  175. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacol. 2003;28:519–26.

    Article  CAS  Google Scholar 

  176. Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, et al. Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005;48:1709–12.

    Article  PubMed  CAS  Google Scholar 

  177. Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23:65–73.

    Article  CAS  PubMed  Google Scholar 

  178. Bymaster FP, Falcone JF. Decreased binding affinity of olanzapine and clozapine for human muscarinic receptors in intact clonal cells in physiological medium. Eur J Pharmacol. 2000;390:245–8.

    Article  CAS  PubMed  Google Scholar 

  179. Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, et al. Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha1-adrenergic receptors in vitro. Schizophr Res. 1999;37:107–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar P. Davis.

Ethics declarations

Conflict of Interest

Mellar Davis has no conflict of interest.

Gareth Sanger currently receives research funding from Takeda Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Palliative and Supportive Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M.P., Sanger, G.J. The Benefits of Olanzapine in Palliating Symptoms. Curr. Treat. Options in Oncol. 22, 5 (2021). https://doi.org/10.1007/s11864-020-00804-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00804-1

Keywords

Navigation