Opinion statement
Robotic-assisted videothoracoscopic surgery (R-VATS) has become increasingly popular and widely used since its introduction and is nowadays considered a standard treatment approach in many centres for the treatment of non-small cell lung cancer. R-VATS was initially developed to overcome the drawbacks of VATS by offering surgeons more flexibility and three-dimensional optics during thoracoscopic surgery. The effectiveness of R-VATS lobectomy regarding oncological outcomes, morbidity, mortality, and postoperative quality of life (QoL) has been shown in an increasing number of studies. More recently, these results have also been corroborated for sublobar resections, more specifically for segmentectomy. However, no well-powered, multicentre randomized trials have been performed to demonstrate the superiority of R-VATS compared with open surgery or conventional types of VATS (total VATS, uniportal VATS, etc.). The majority of the evidence currently available is based on non-randomized studies, and many studies report conflicting results when comparing R-VATS and conventional VATS. Moreover, there is a lack of data regarding the cost and the cost-efficiency of robotic surgery compared with VATS and open surgery. Current evidence suggests that R-VATS costs are higher than VATS and that a deficit can only be prevented when up to 150–300 thoracic surgery procedures are performed annually. Finally, robotic-assisted laparoscopic surgery showed better ergonomics and reduced musculoskeletal disorders compared with non-robotic laparoscopic surgery.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Wong MCS, Lao XQ, Ho KF, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7(1):14300. https://doi.org/10.1038/s41598-017-14513-7.
de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220–33. https://doi.org/10.21037/tlcr.2018.05.06.
Malvezzi M, Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2017, with focus on lung cancer. Annals of oncology: official journal of the European Society for Medical Oncology. 2017;28(5):1117–23. https://doi.org/10.1093/annonc/mdx033.
Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19. https://doi.org/10.1007/978-3-319-24223-1_1.
Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2019;14(10):1732–42. https://doi.org/10.1016/j.jtho.2019.05.044Follow-up study on large nationwide lung cancer screening trial from the United States.
Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. https://doi.org/10.1056/NEJMoa1102873.
•• de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. New England journal of medicine. 2020;382(6):503–13. https://doi.org/10.1056/NEJMoa1911793Large Dutch/Belgian randomized controlled troam regarding lung cancer screening with low-dose CT-scans.
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer study group. Ann Thorac Surg. 1995;60(3):615–22 discussion 22-3.
Lang-Lazdunski L. Surgery for nonsmall cell lung cancer. Eur Respir Rev. 2013;22(129):382–404. https://doi.org/10.1183/09059180.00003913.
Ujiie H, Gregor A, Yasufuku K. Minimally invasive surgical approaches for lung cancer. Expert Rev Respir Med. 2019;13(6):571–8. https://doi.org/10.1080/17476348.2019.1610399.
Ikeda N. Updates on minimally invasive surgery in non-small cell lung Cancer. Curr Treat Options in Oncol. 2019;20(2):16. https://doi.org/10.1007/s11864-019-0614-9.
Abbas AE. Surgical management of lung cancer: history, evolution, and modern advances. Curr Oncol Rep. 2018;20(12):98. https://doi.org/10.1007/s11912-018-0741-7.
Velez-Cubian FO, Ng EP, Fontaine JP, Toloza EM. Robotic-assisted videothoracoscopic surgery of the lung. Cancer Control. 2015;22(3):314–25. https://doi.org/10.1177/107327481502200309.
Singer E, Kneuertz PJ, D'Souza DM, Moffatt-Bruce SD, Merritt RE. Understanding the financial cost of robotic lobectomy: calculating the value of innovation? Ann Cardiothorac Surg. 2019;8(2):194–201. https://doi.org/10.21037/acs.2018.05.18.
Kanzaki M. Current status of robot-assisted thoracoscopic surgery for lung cancer. Surg Today. 2019;49(10):795–802. https://doi.org/10.1007/s00595-019-01793-x.
Jang HJ, Lee HS, Park SY, Zo JI. Comparison of the early robot-assisted lobectomy experience to video-assisted thoracic surgery lobectomy for lung cancer: a single-institution case series matching study. Innovations (Phila). 2011;6(5):305–10. https://doi.org/10.1097/IMI.0b013e3182378b4c.
Louie BE, Farivar AS, Aye RW, Vallieres E. Early experience with robotic lung resection results in similar operative outcomes and morbidity when compared with matched video-assisted thoracoscopic surgery cases. Ann Thorac Surg. 2012;93(5):1598–604; discussion 604-5. https://doi.org/10.1016/j.athoracsur.2012.01.067.
Mungo B, Hooker CM, Ho JS, Yang SC, Battafarano RJ, Brock MV, et al. Robotic versus thoracoscopic resection for lung cancer: early results of a new robotic program. J Laparoendosc Adv Surg Tech A. 2016;26(4):243–8. https://doi.org/10.1089/lap.2016.0049.
Novellis P, Bottoni E, Voulaz E, Cariboni U, Testori A, Bertolaccini L, et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: comparison of costs and outcomes at a single institute. Journal of thoracic disease. 2018;10(2):790–8. https://doi.org/10.21037/jtd.2018.01.123.
Paul S, Jalbert J, Isaacs AJ, Altorki NK, Isom OW, Sedrakyan A. Comparative effectiveness of robotic-assisted vs thoracoscopic lobectomy. Chest. 2014;146(6):1505–12. https://doi.org/10.1378/chest.13-3032.
Guo F, Ma D, Li S. Compare the prognosis of Da Vinci robot-assisted thoracic surgery (RATS) with video-assisted thoracic surgery (VATS) for non-small cell lung cancer: a meta-analysis. Medicine (Baltimore). 2019;98(39):e17089. https://doi.org/10.1097/md.0000000000017089.
• Liang H, Liang W, Zhao L, Chen D, Zhang J, Zhang Y, et al. Robotic versus video-assisted lobectomy/segmentectomy for lung cancer: a meta-analysis. Ann Surg. 2018;268(2):254–9. https://doi.org/10.1097/sla.0000000000002346Recent extensive meta-analysis comparing robot-assisted and video-assisted lobectomy/segmentectomy.
Emmert A, Straube C, Buentzel J, Roever C. Robotic versus thoracoscopic lung resection: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(35):e7633. https://doi.org/10.1097/md.0000000000007633.
Oh DS, Reddy RM, Gorrepati ML, Mehendale S, Reed MF. Robotic-assisted, video-assisted thoracoscopic and open lobectomy: propensity-matched analysis of recent premier data. Ann Thorac Surg. 2017;104(5):1733–40. https://doi.org/10.1016/j.athoracsur.2017.06.020.
Louie BE, Wilson JL, Kim S, Cerfolio RJ, Park BJ, Farivar AS, et al. Comparison of video-assisted thoracoscopic surgery and robotic approaches for clinical stage I and stage II non-small cell lung cancer using the Society of Thoracic Surgeons Database. Ann Thorac Surg. 2016;102(3):917–24. https://doi.org/10.1016/j.athoracsur.2016.03.032.
Wilson JL, Louie BE, Cerfolio RJ, Park BJ, Vallieres E, Aye RW, et al. The prevalence of nodal upstaging during robotic lung resection in early stage non-small cell lung cancer. Ann Thorac Surg. 2014;97(6):1901–6; discussion 6-7. https://doi.org/10.1016/j.athoracsur.2014.01.064.
Yang S, Guo W, Chen X, Wu H, Li H. Early outcomes of robotic versus uniportal video-assisted thoracic surgery for lung cancer: a propensity score-matched study. Eur J Cardiothorac Surg. 2018;53(2):348–52. https://doi.org/10.1093/ejcts/ezx310.
Hennon MW, DeGraaff LH, Groman A, Demmy TL, Yendamuri S. The association of nodal upstaging with surgical approach and its impact on long-term survival after resection of non-small-cell lung cancer. Eur J Cardiothorac Surg. 2019;57:888–95. https://doi.org/10.1093/ejcts/ezz320.
Li W, Yang X-N, Liao R-Q, Nie Q, Dong S, Zhai H-R, et al. Intraoperative frozen sections of the regional lymph nodes contribute to surgical decision-making in non-small cell lung cancer patients. Journal of thoracic disease. 2016;8(8):1974–80. https://doi.org/10.21037/jtd.2016.06.49.
Veronesi G. Robotic lobectomy and segmentectomy for lung cancer: results and operating technique. Journal of thoracic disease. 2015;7(Suppl 2):S122–30. https://doi.org/10.3978/j.issn.2072-1439.2015.04.34.
Detterbeck FC. Lobectomy versus limited resection in T1N0 lung cancer. Ann Thorac Surg. 2013;96(2):742–4. https://doi.org/10.1016/j.athoracsur.2013.03.074.
Subramanian M, McMurry T, Meyers BF, Puri V, Kozower BD. Long-term results for clinical stage IA lung cancer: comparing lobectomy and sublobar resection. Ann Thorac Surg. 2018;106(2):375–81. https://doi.org/10.1016/j.athoracsur.2018.02.049.
Khullar OV, Liu Y, Gillespie T, Higgins KA, Ramalingam S, Lipscomb J, et al. Survival after sublobar resection versus lobectomy for clinical stage IA lung cancer: an analysis from the National Cancer Data Base. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2015;10(11):1625–33. https://doi.org/10.1097/jto.0000000000000664.
Harada H, Okada M, Sakamoto T, Matsuoka H, Tsubota N. Functional advantage after radical segmentectomy versus lobectomy for lung cancer. Ann Thorac Surg. 2005;80(6):2041–5. https://doi.org/10.1016/j.athoracsur.2005.06.010.
Cao C, Gupta S, Chandrakumar D, Tian DH, Black D, Yan TD. Meta-analysis of intentional sublobar resections versus lobectomy for early stage non-small cell lung cancer. Ann Cardiothorac Surg. 2014;3(2):134–41. https://doi.org/10.3978/j.issn.2225-319X.2014.03.08.
Dylewski MR, Ohaeto AC, Pereira JF. Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin Thorac Cardiovasc Surg. 2011;23(1):36–42. https://doi.org/10.1053/j.semtcvs.2011.01.005.
• Nguyen D, Gharagozloo F, Tempesta B, Meyer M, Gruessner A. Long-term results of robotic anatomical segmentectomy for early-stage non-small-cell lung cancer. Eur J Cardiothorac Surg. 2019;55(3):427–33. https://doi.org/10.1093/ejcts/ezy332One of the first large retrospective studies on the long-term results and surgical outcomes of robotic anatomical segmentectomy.
Xie B, Sun X, Qin Y, Liu A, Miao S, Jiao W. Short-term outcomes of typical versus atypical lung segmentectomy by minimally invasive surgeries. Thoracic Cancer. 2019;10(9):1812–8. https://doi.org/10.1111/1759-7714.13152.
Nakamura K, Saji H, Nakajima R, Okada M, Asamura H, Shibata T, et al. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn J Clin Oncol. 2010;40(3):271–4. https://doi.org/10.1093/jjco/hyp156.
Kohman LJ, Gu L, Altorki N, Scalzetti E, Veit LJ, Wallen JM, et al. Biopsy first: lessons learned from cancer and leukemia group B (CALGB) 140503. J Thorac Cardiovasc Surg. 2017;153(6):1592–7. https://doi.org/10.1016/j.jtcvs.2016.12.045.
Singer E, Kneuertz PJ, D’Souza DM, Moffatt-Bruce SD, Merritt RE. Understanding the financial cost of robotic lobectomy: calculating the value of innovation? Annals of cardiothoracic surgery. 2019;8(2):194–201. https://doi.org/10.21037/acs.2018.05.18.
Rajaram R, Mohanty S, Bentrem DJ, Pavey ES, Odell DD, Bharat A, et al. Nationwide assessment of robotic lobectomy for non-small cell lung cancer. Ann Thorac Surg. 2017;103(4):1092–100. https://doi.org/10.1016/j.athoracsur.2016.09.108.
Swanson SJ, Miller DL, McKenna RJ Jr, Howington J, Marshall MB, Yoo AC, et al. Comparing robot-assisted thoracic surgical lobectomy with conventional video-assisted thoracic surgical lobectomy and wedge resection: results from a multihospital database (Premier). J Thorac Cardiovasc Surg. 2014;147(3):929–37. https://doi.org/10.1016/j.jtcvs.2013.09.046.
Park BJ, Flores RM. Cost comparison of robotic, video-assisted thoracic surgery and thoracotomy approaches to pulmonary lobectomy. Thorac Surg Clin. 2008;18(3):297–300, vii. https://doi.org/10.1016/j.thorsurg.2008.05.003.
Deen SA, Wilson JL, Wilshire CL, Vallieres E, Farivar AS, Aye RW, et al. Defining the cost of care for lobectomy and segmentectomy: a comparison of open, video-assisted thoracoscopic, and robotic approaches. Ann Thorac Surg. 2014;97(3):1000–7. https://doi.org/10.1016/j.athoracsur.2013.11.021.
Epstein S, Sparer EH, Tran BN, Ruan QZ, Dennerlein JT, Singhal D, et al. Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis. JAMA surgery. 2018;153(2):e174947. https://doi.org/10.1001/jamasurg.2017.4947.
Catanzarite T, Tan-Kim J, Whitcomb EL, Menefee S. Ergonomics in surgery: a review. Female pelvic medicine & reconstructive surgery. 2018;24(1):1–12. https://doi.org/10.1097/spv.0000000000000456.
Grant KMK, Vo T, Tiong LU. The painful truth: work-related musculoskeletal disorders in Australian surgeons. Occupational medicine (Oxford, England). 2019. https://doi.org/10.1093/occmed/kqz155.
van der Schatte Olivier RH, Van't Hullenaar CDP, Ruurda JP, Broeders IAMJ. Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc. 2009;23(6):1365–71. https://doi.org/10.1007/s00464-008-0184-6.
Mendes V, Bruyere F, Escoffre JM, Binet A, Lardy H, Marret H, et al. Experience implication in subjective surgical ergonomics comparison between laparoscopic and robot-assisted surgeries. J Robot Surg. 2020;14(1):115–21. https://doi.org/10.1007/s11701-019-00933-2.
Sanchez A, Rodriguez O, Jara G, Sanchez R, Vegas L, Rosciano J, et al. Robot-assisted surgery and incisional hernia: a comparative study of ergonomics in a training model. J Robot Surg. 2018;12(3):523–7. https://doi.org/10.1007/s11701-017-0777-y.
Hansen HJ, Petersen RH, Christensen M. Video-assisted thoracoscopic surgery (VATS) lobectomy using a standardized anterior approach. Surg Endosc. 2011;25(4):1263–9. https://doi.org/10.1007/s00464-010-1355-9.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Lawek Berzenji declares that he/she has no conflict of interest.
Krishan Yogeswaran declares that he/she has no conflict of interest.
Paul Van Schil declares that he has no conflict of interest.
Patrick Lauwers declares that he has no conflict of interest.
Jeroen M. H. Hendriks declares that he/she has no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Lung Cancer
Rights and permissions
About this article
Cite this article
Berzenji, L., Yogeswaran, K., Van Schil, P. et al. Use of Robotics in Surgical Treatment of Non-small Cell Lung Cancer. Curr. Treat. Options in Oncol. 21, 80 (2020). https://doi.org/10.1007/s11864-020-00778-0
Published:
DOI: https://doi.org/10.1007/s11864-020-00778-0