Skip to main content

Advertisement

Log in

Anatomic and Functional Imaging of Neuroendocrine Tumors

  • Neuroendocrine Cancers (JR Strosberg, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Neuroendocrine tumors (NETs) can occur in a wide variety of organs and display a spectrum of pathologic behavior. Accurate and effective imaging is paramount to the diagnosis, staging, therapy, and surveillance of patients with NET. There have been continuous advancements in the imaging of NET which includes anatomic and functional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dromain C, de Baere T, Baudin E, Galline J, Ducreux M, Boige V, et al. MR imaging of hepatic metastases caused by neuroendocrine tumors: comparing four techniques. AJR Am J Roentgenol. 2003;180(1):121–8.

    Article  Google Scholar 

  2. De Santis M, Santini D, Alborino S, Carubbi F, Romagnoli R. Liver metastasis from carcinoid: diagnostic imaging. Radiol Med. 1996;92(5):594–9.

    PubMed  Google Scholar 

  3. Paulson EK, McDermott VG, Keogan MT, DeLong DM, Frederick MG, Nelson RC. Carcinoid metastases to the liver: role of triple-phase helical CT. Radiology. 1998;206(1):143–50.

    Article  CAS  Google Scholar 

  4. Rozenblum L, Mokrane FZ, Yeh R, Sinigaglia M, Besson FL, Seban RD, et al. Imaging-guided precision medicine in non-resectable gastro-entero-pancreatic neuroendocrine tumors: a step-by- step approach. Eur J Radiol. 2020;122:108743. https://doi.org/10.1016/j.ejrad.2019.108743.

    Article  PubMed  Google Scholar 

  5. Kim KW, Krajewski KM, Nishino M, Jagannathan JP, Shinagare AB, Tirumani SH, et al. Update on the management of gastroenteropancreatic neuroendocrine tumors with emphasis on the role of imaging. AJR Am J Roentgenol. 2013;201(4):811–24. https://doi.org/10.2214/AJR.12.10240.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kolbeck KJ, Farsad K. Catheter-based treatments for hepatic metastases from neuroendocrine tumors. AJR Am J Roentgenol. 2014;203(4):717–24. https://doi.org/10.2214/AJR.14.12983.

    Article  PubMed  Google Scholar 

  7. Liapi E, Geschwind JF, Vossen JA, Buijs M, Georgiades CS, Bluemke DA, et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol. 2008;190(1):67–73. https://doi.org/10.2214/ajr.07.2550.

    Article  PubMed  Google Scholar 

  8. Kim YK, Park G, Kim CS, Yu HC, Han YM. Diagnostic efficacy of gadoxetic acid-enhanced MRI for the detection and characterisation of liver metastases: comparison with multidetector- row CT. Br J Radiol. 2012;85(1013):539–47. https://doi.org/10.1259/bjr/25139667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HJ, Lee SS, Byun JH, Kim JC, Yu CS, Park SH, et al. Incremental value of liver MR imaging in patients with potentially curable colorectal hepatic metastasis detected at CT: a prospective comparison of diffusion-weighted imaging, gadoxetic acid-enhanced MR imaging, and a combination of both MR techniques. Radiology. 2015;274(3):712–22. https://doi.org/10.1148/radiol.14140390.

    Article  PubMed  Google Scholar 

  10. Tirumani SH, Jagannathan JP, Braschi-Amirfarzan M, Qin L, Balthazar P, Ramaiya NH, et al. Value of hepatocellular phase imaging after intravenous gadoxetate disodium for assessing hepatic metastases from gastroenteropancreatic neuroendocrine tumors: comparison with other MRI pulse sequences and with extracellular agent. Abdom Radiol (NY). 2018;43(9):2329–39. https://doi.org/10.1007/s00261-018-1496-1.

    Article  Google Scholar 

  11. Morse B, Jeong D, Thomas K, Diallo D, Strosberg JR. Magnetic resonance imaging of neuroendocrine tumor hepatic metastases: does hepatobiliary phase imaging improve lesion conspicuity and interobserver agreement of lesion measurements? Pancreas. 2017;46(9):1219–24. https://doi.org/10.1097/MPA.0000000000000920.

    Article  PubMed  Google Scholar 

  12. Ganeshan D, Bhosale P, Yang T, Kundra V. Imaging features of carcinoid tumors of the gastrointestinal tract. AJR Am J Roentgenol. 2013;201(4):773–86. https://doi.org/10.2214/AJR.12.9758.

    Article  PubMed  Google Scholar 

  13. Gupta A, Lubner MG, Menias CO, Mellnick VM, Elsayes KM, Pickhardt PJ. Multimodality imaging of ileal neuroendocrine (carcinoid) tumor. AJR Am J Roentgenol. 2019;213:1–9. https://doi.org/10.2214/AJR.18.21025.

    Article  Google Scholar 

  14. Barlow JM, Goss BC, Hansel SL, Kolbe AB, Rackham JL, Bruining DH, et al. CT enterography: technical and interpretive pitfalls. Abdom Imaging. 2015;40(5):1081–96. https://doi.org/10.1007/s00261-015-0364-5.

    Article  PubMed  Google Scholar 

  15. Baker ME, Hara AK, Platt JF, Maglinte DD, Fletcher JG. CT enterography for Crohn’s disease: optimal technique and imaging issues. Abdom Imaging. 2015;40(5):938–52. https://doi.org/10.1007/s00261-015-0357-4.

    Article  PubMed  Google Scholar 

  16. Soyer P, Aout M, Hoeffel C, Vicaut E, Place V, Boudiaf M. Helical CT-enteroclysis in the detection of small-bowel tumours: a meta-analysis. Eur Radiol. 2013;23(2):388–99. https://doi.org/10.1007/s00330-012-2595-y.

    Article  PubMed  Google Scholar 

  17. Paparo F, Garlaschi A, Biscaldi E, Bacigalupo L, Cevasco L, Rollandi GA. Computed tomography of the bowel: a prospective comparison study between four techniques. Eur J Radiol. 2013;82(1):e1–e10. https://doi.org/10.1016/j.ejrad.2012.08.021.

    Article  PubMed  Google Scholar 

  18. Masselli G, Di Tola M, Casciani E, Polettini E, Laghi F, Monti R, et al. Diagnosis of small-bowel diseases: prospective comparison of multi-detector row CT enterography with MR enterography. Radiology. 2016;279(2):420–31. https://doi.org/10.1148/radiol.2015150263.

    Article  PubMed  Google Scholar 

  19. Amzallag-Bellenger E, Soyer P, Barbe C, Diebold MD, Cadiot G, Hoeffel C. Prospective evaluation of magnetic resonance enterography for the detection of mesenteric small bowel tumours. Eur Radiol. 2013;23(7):1901–10. https://doi.org/10.1007/s00330-013-2800-7.

    Article  PubMed  Google Scholar 

  20. • Howe JR, Cardona K, Fraker DL, Kebebew E, Untch BR, Wang YZ, et al. The surgical management of small bowel neuroendocrine tumors: consensus guidelines of the North American Neuroendocrine Tumor Society. Pancreas. 2017;46(6):715–31. https://doi.org/10.1097/MPA.0000000000000846. This paper provides an excellent overview of expert consensus regarding the imaging and management of small bowel neuroendocrine tumors and addresses common clinical questions.

  21. Sugumar A. Diagnosis and management of autoimmune pancreatitis. Gastroenterol Clin N Am. 2012;41(1):9–22. https://doi.org/10.1016/j.gtc.2011.12.008.

    Article  Google Scholar 

  22. Granata V, Fusco R, Setola SV, Castelguidone ELD, Camera L, Tafuto S, et al. The multidisciplinary team for gastroenteropancreatic neuroendocrine tumours: the radiologist’s challenge. Radiol Oncol. 2019;53(4):373–87. https://doi.org/10.2478/raon-2019-0040.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Strosberg JR, Halfdanarson TR, Bellizzi AM, Chan JA, Dillon JS, Heaney AP, et al. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas. 2017;46(6):707–14. https://doi.org/10.1097/MPA.0000000000000850.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kunz PL, Reidy-Lagunes D, Anthony LB, Bertino EM, Brendtro K, Chan JA, et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013;42(4):557–77. https://doi.org/10.1097/MPA.0b013e31828e34a400006676-201305000-00002.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pape UF, Niederle B, Costa F, Gross D, Kelestimur F, Kianmanesh R, et al. ENETS consensus guidelines for neuroendocrine neoplasms of the appendix (excluding goblet cell carcinomas). Neuroendocrinology. 2016;103(2):144–52. https://doi.org/10.1159/000443165.

    Article  CAS  PubMed  Google Scholar 

  26. Sundin A, Vullierme MP, Kaltsas G, Plockinger U, Mallorca Consensus Conference p, European Neuroendocrine Tumor S. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology. 2009;90(2):167–83. https://doi.org/10.1159/000184855.

    Article  CAS  PubMed  Google Scholar 

  27. Lee NJ, Hruban RH, Fishman EK. Pancreatic neuroendocrine tumor: review of heterogeneous spectrum of CT appearance. Abdom Radiol (NY). 2018;43(11):3025–34. https://doi.org/10.1007/s00261-018-1574-4.

    Article  PubMed  Google Scholar 

  28. Yamada S, Fujii T, Suzuki K, Inokawa Y, Kanda M, Nakayama G, et al. Preoperative identification of a prognostic factor for pancreatic neuroendocrine tumors using multiphase contrast-enhanced computed tomography. Pancreas. 2016;45(2):198–203. https://doi.org/10.1097/MPA.0000000000000443.

    Article  PubMed  Google Scholar 

  29. Fidler JL, Fletcher JG, Reading CC, Andrews JC, Thompson GB, Grant CS, et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am J Roentgenol. 2003;181(3):775–80. https://doi.org/10.2214/ajr.181.3.1810775.

    Article  CAS  PubMed  Google Scholar 

  30. Ichikawa T, Peterson MS, Federle MP, Baron RL, Haradome H, Kawamori Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology. 2000;216(1):163–71. https://doi.org/10.1148/radiology.216.1.r00jl26163.

    Article  CAS  PubMed  Google Scholar 

  31. Dromain C, Deandreis D, Scoazec JY, Goere D, Ducreux M, Baudin E, et al. Imaging of neuroendocrine tumors of the pancreas. Diagn Interv Imaging. 2016;97(12):1241–57. https://doi.org/10.1016/j.diii.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  32. Delle Fave G, Kwekkeboom DJ, Van Cutsem E, Rindi G, Kos-Kudla B, Knigge U, et al. ENETS consensus guidelines for the management of patients with gastroduodenal neoplasms. Neuroendocrinology. 2012;95(2):74–87. https://doi.org/10.1159/000335595.

    Article  CAS  PubMed  Google Scholar 

  33. Carter BW, Lichtenberger JP 3rd, Benveniste MF. MR imaging of thymic epithelial neoplasms. Top Magn Reson Imaging. 2018;27(2):65–71. https://doi.org/10.1097/RMR.0000000000000160.

    Article  PubMed  Google Scholar 

  34. Garcia-Carbonero R, Sorbye H, Baudin E, Raymond E, Wiedenmann B, Niederle B, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103(2):186–94. https://doi.org/10.1159/000443172.

    Article  CAS  PubMed  Google Scholar 

  35. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  36. Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, et al. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat. 2018;17:1533033818782788. https://doi.org/10.1177/1533033818782788.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res. 2017;23(23):7253–62. https://doi.org/10.1158/1078-0432.CCR-17-1038.

    Article  CAS  PubMed  Google Scholar 

  38. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys Med. 2017;38:122–39. https://doi.org/10.1016/j.ejmp.2017.05.071.

    Article  PubMed  Google Scholar 

  39. Guo C, Zhuge X, Wang Z, Wang Q, Sun K, Feng Z, et al. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: association with WHO grade. Abdom Radiol (NY). 2019;44(2):576–85. https://doi.org/10.1007/s00261-018-1763-1.

    Article  PubMed  Google Scholar 

  40. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol. 2019;29(12):6880–90. https://doi.org/10.1007/s00330-019-06176-x.

    Article  PubMed  Google Scholar 

  41. Liang W, Yang P, Huang R, Xu L, Wang J, Liu W, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin Cancer Res. 2019;25(2):584–94. https://doi.org/10.1158/1078-0432.CCR-18-1305.

    Article  PubMed  Google Scholar 

  42. Guo C, Chen X, Wang Z, Xiao W, Wang Q, Sun K, et al. Differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma using magnetic resonance imaging: the value of contrast-enhanced and diffusion weighted imaging. Oncotarget. 2017;8(26):42962–73. https://doi.org/10.18632/oncotarget.17309.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Wang Z, et al. The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer Imaging. 2018;18(1):37. https://doi.org/10.1186/s40644-018-0170-8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim M, Kang TW, Kim YK, Kim SH, Kwon W, Ha SY, et al. Pancreatic neuroendocrine tumour: correlation of apparent diffusion coefficient or WHO classification with recurrence-free survival. Eur J Radiol. 2016;85(3):680–7. https://doi.org/10.1016/j.ejrad.2015.12.029.

    Article  PubMed  Google Scholar 

  45. Wang Y, Chen ZE, Yaghmai V, Nikolaidis P, McCarthy RJ, Merrick L, et al. Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics. J Magn Reson Imaging. 2011;33(5):1071–9. https://doi.org/10.1002/jmri.22541.

    Article  PubMed  Google Scholar 

  46. Yano M, Misra S, Carpenter DH, Salter A, Hildebolt CF. Pancreatic neuroendocrine tumors: computed tomography enhancement, but not histological grade, correlates with tumor aggression. Pancreas. 2017;46(10):1366–72. https://doi.org/10.1097/MPA.0000000000000922.

    Article  CAS  PubMed  Google Scholar 

  47. Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110–111:38–51. https://doi.org/10.1016/j.addr.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  48. Krenning EP, Valkema R, Kooij PP, Breeman WA, Bakker WH, deHerder WW, et al. Scintigraphy and radionuclide therapy with [indium-111-labelled-diethyl triamine penta-acetic acid-D-Phe1]-octreotide. Ital J Gastroenterol Hepatol. 1999;31 Suppl 2:S219–23.

    CAS  PubMed  Google Scholar 

  49. Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500–16. https://doi.org/10.1148/rg.352140164.

    Article  PubMed  Google Scholar 

  50. O'Byrne KJ, Halmos G, Pinski J, Groot K, Szepeshazi K, Schally AV, et al. Somatostatin receptor expression in lung cancer. Eur J Cancer. 1994;30A(11):1682–7. https://doi.org/10.1016/0959-8049(94)00351-5.

    Article  CAS  PubMed  Google Scholar 

  51. Dalm SU, Melis M, Emmering J, Kwekkeboom DJ, de Jong M. Breast cancer imaging using radiolabelled somatostatin analogues. Nucl Med Biol. 2016;43(9):559–65. https://doi.org/10.1016/j.nucmedbio.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  52. Ruuska T, Ramirez Escalante Y, Vaittinen S, Gardberg M, Kiviniemi A, Marjamaki P, et al. Somatostatin receptor expression in lymphomas: a source of false diagnosis of neuroendocrine tumor at (68)Ga-DOTANOC PET/CT imaging. Acta Oncol. 2018;57(2):283–9. https://doi.org/10.1080/0284186X.2017.1342864.

    Article  CAS  PubMed  Google Scholar 

  53. Silva CB, Ongaratti BR, Trott G, Haag T, Ferreira NP, Leaes CG, et al. Expression of somatostatin receptors (SSTR1-SSTR5) in meningiomas and its clinicopathological significance. Int J Clin Exp Pathol. 2015;8(10):13185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. ten Bokum AM, Hofland LJ, van Hagen PM. Somatostatin and somatostatin receptors in the immune system: a review. Eur Cytokine Netw. 2000;11(2):161–76.

    PubMed  Google Scholar 

  55. •• Barrio M, Czernin J, Fanti S, Ambrosini V, Binse I, Du L, et al. The impact of somatostatin receptor-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J Nucl Med. 2017;58(5):756–61. https://doi.org/10.2967/jnumed.116.185587. This paper quantifies the significant impact gallium-68 PET/CT can have on patient management.

  56. Hope TA, Bergsland EK, Bozkurt MF, Graham M, Heaney AP, Herrmann K, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med. 2018;59(1):66–74. https://doi.org/10.2967/jnumed.117.202275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016;23(3):191–9. https://doi.org/10.1530/ERC-15-0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kratochwil C, Stefanova M, Mavriopoulou E, Holland-Letz T, Dimitrakopoulou-Strauss A, Afshar-Oromieh A, et al. SUV of [68Ga]DOTATOC-PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol Imaging Biol. 2015;17(3):313–8. https://doi.org/10.1007/s11307-014-0795-3.

    Article  CAS  PubMed  Google Scholar 

  59. Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2017;58(1):91–6. https://doi.org/10.2967/jnumed.116.178095.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Morse MD.

Ethics declarations

Conflict of Interest

Brian Morse declares that he has no conflict of interest. Taymeyah Al-Toubah declares that she has no conflict of interest. Jaime Montilla-Soler declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroendocrine Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morse, B., Al-Toubah, T. & Montilla-Soler, J. Anatomic and Functional Imaging of Neuroendocrine Tumors. Curr. Treat. Options in Oncol. 21, 75 (2020). https://doi.org/10.1007/s11864-020-00770-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00770-8

Keywords

Navigation