Skip to main content

Advertisement

Log in

PI3K Inhibitors and Their Role as Novel Agents for Targeted Therapy in Lymphoma

  • Lymphoma (DO Persky, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Phosphatidylinositol 3-kinase (PI3K) inhibitors represent a novel class of agents targeting the key cellular regulatory PI3K/AKT/mTOR pathway involved in crucial functions such as cellular proliferation, cell cycle regulation, protein synthesis, and cell motility. This review starts with an overview of the PI3K pathway and the rationale for its targeting in lymphoma and potential on-target side effects of PI3K inhibition. With three agents now FDA approved for the treatment of relapsed and refractory (R/R) indolent non-Hodgkin lymphoma (iNHL), idelalisib, copanlisib, and duvelisib, we aim to review the pivotal trials leading to their approval as well as their clinical applications according to lymphoma subtypes. Important treatment-related adverse events are also reviewed and a perspective on the clinical role of these agents is provided, as well as some practical guidance on how to prevent, monitor, and manage potential adverse events in the clinic. PI3K inhibitors have an established role in the management of R/R iNHL, but their use and development are hampered by adverse events, particularly when used in combination with other anti-lymphoma therapies. Finally, this review highlights areas in need of more research in order to optimally use these agents in the care of patients with lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov. 2013;12(3):229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luongo F, Colonna F, Calapa F, Vitale S, Fiori ME, De Maria R. PTEN tumor-suppressor: the dam of stemness in cancer. Cancers. 2019;11(8).

    Article  CAS  PubMed Central  Google Scholar 

  3. Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3(4):317–30.

    Article  CAS  PubMed  Google Scholar 

  4. Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev. 2017;59:93–101.

    Article  CAS  PubMed  Google Scholar 

  5. Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40.

    Article  CAS  PubMed  Google Scholar 

  6. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94 e415.

  9. Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(45):18250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Dreyling M, Santoro A, Mollica L, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35(35):3898–905 The results of this phase 2 trial led to the FDA approval of copanlisib in patients with R/R FL.

    Article  CAS  PubMed  Google Scholar 

  11. Amrein L, Shawi M, Grenier J, Aloyz R, Panasci L. The phosphatidylinositol-3 kinase I inhibitor BKM120 induces cell death in B-chronic lymphocytic leukemia cells in vitro. Int J Cancer. 2013;133(1):247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheffold A, Jebaraj BMC, Tausch E, Bloehdorn J, Ghia P, Yahiaoui A, et al. IGF1R as druggable target mediating PI3K-delta inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood. 2019;134(6):534–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Flinn IW, Miller CB, Ardeshna KM, et al. DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol. 2019;37(11):912–22 The result of this phase 2 trial led to the FDA approval of duvelisib in patients with R/R FL.

    Article  CAS  PubMed  Google Scholar 

  14. Sehn LH, Chua N, Mayer J, Dueck G, Trněný M, Bouabdallah K, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081–93.

    Article  CAS  PubMed  Google Scholar 

  15. • Gopal AK, Kahl BS, de Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18 The results of this phase 2 trial led to the FDA approval of idelalisib in patients with R/R FL and SLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kahl BS, Yang DT. Follicular lymphoma: evolving therapeutic strategies. Blood. 2016;127(17):2055–63.

    Article  CAS  PubMed  Google Scholar 

  17. Conconi A, Lobetti-Bodoni C, Montoto S, et al. Life expectancy of young adults with follicular lymphoma. Ann Oncol. 2015;26(11):2317–22.

    Article  CAS  PubMed  Google Scholar 

  18. Pulte D, Gondos A, Brenner H. Expected long-term survival of older patients diagnosed with non-Hodgkin lymphoma in 2008-2012. Cancer Epidemiol. 2012;36(1):e19–25.

    Article  PubMed  Google Scholar 

  19. Olszewski AJ, Castillo JJ. Survival of patients with marginal zone lymphoma: analysis of the Surveillance, Epidemiology, and End Results database. Cancer. 2013;119(3):629–38.

    Article  PubMed  Google Scholar 

  20. Somoza JR, Koditek D, Villasenor AG, et al. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase delta. J Biol Chem. 2015;290(13):8439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014;123(22):3406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014;123(22):3398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paul J, Soujon M, Wengner AM, Zitzmann-Kolbe S, Sturz A, Haike K, et al. Simultaneous inhibition of PI3Kdelta and PI3Kalpha induces ABC-DLBCL regression by blocking BCR-dependent and -independent activation of NF-kappaB and AKT. Cancer Cell. 2017;31(1):64–78.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature. 2016;539(7629):437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature. 2016;539(7629):443–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Horwitz SM, Koch R, Porcu P, Oki Y, Moskowitz A, Perez M, et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131(8):888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models. Mol Cancer Ther. 2013;12(11):2319–30.

    Article  CAS  PubMed  Google Scholar 

  29. Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol. 2013;20(11):1364–74.

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27(41):5511–26.

    Article  CAS  PubMed  Google Scholar 

  31. Burger MT, Pecchi S, Wagman A, Ni ZJ, Knapp M, Hendrickson T, et al. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med Chem Lett. 2011;2(10):774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res. 2012;18(15):4104–13.

    Article  CAS  PubMed  Google Scholar 

  33. Foster P, Yamaguchi K, Hsu PP, Qian F, du X, Wu J, et al. The selective PI3K inhibitor XL147 (SAR245408) inhibits tumor growth and survival and potentiates the activity of chemotherapeutic agents in preclinical tumor models. Mol Cancer Ther. 2015;14(4):931–40.

    Article  CAS  PubMed  Google Scholar 

  34. Wang KF, Yang H, Jiang WQ, Li S, Cai YC. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells. Int J Mol Med. 2015;36(6):1556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vakkalanka S. Inhibition of PI3Kd kinase by a selective, small molecular inhibitor suppresses B-cell proliferation and leukemic cell growth. AACR. 2012:Poster 3741.

  36. Moreno O, et al. Safety, pharmacokinetics, and pharmacodynamics of ME-401, an oral, potent, and selective inhibitor of phosphatidylinositol 3-kinase P110δ, following single ascending dose administration to healthy volunteers. Clin Ther. 2018;40(11):0149–2918.

    Article  CAS  Google Scholar 

  37. Wagner-Johnston ND, Schuster SJ, de Vos S, et al. Long-term follow-up of idelalisib monotherapy in patients with double-refractory marginal zone lymphoma or lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia. Blood. 2019;134(Supplement_1):4006–4006.

    Article  Google Scholar 

  38. Wagner-Johnston ND, Gopal AK, Kahl BS, et al. Patient-reported outcomes data from a phase 2 study of idelalisib in patients with refractory indolent B-cell non-Hodgkin lymphoma (iNHL). J Clin Oncol. 2014;32(15_suppl):e19554-e19554.

    Google Scholar 

  39. • Eyre TA, Osborne WL, Gallop-Evans E, et al. Results of a multicentre UK-wide compassionate use programme evaluating the efficacy of idelalisib monotherapy in relapsed, refractory follicular lymphoma. Br J Haematol. 2018;181(4):555–9 This retrospective cohort study represents the only real-world series outlining the efficacy of idelalisib in patients with R/R FL.

    Article  PubMed  Google Scholar 

  40. Gopal AK, Fanale MA, Moskowitz CH, Shustov AR, Mitra S, Ye W, et al. Phase II study of idelalisib, a selective inhibitor of PI3Kdelta, for relapsed/refractory classical Hodgkin lymphoma. Ann Oncol. 2017;28(5):1057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Vos S, Wagner-Johnston ND, Coutre SE, Flinn IW, Schreeder MT, Fowler NH, et al. Combinations of idelalisib with rituximab and/or bendamustine in patients with recurrent indolent non-Hodgkin lymphoma. Blood Adv. 2016;1(2):122–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Smith SM, Pitcher BN, Jung SH, Bartlett NL, Wagner-Johnston N, Park SI, et al. Safety and tolerability of idelalisib, lenalidomide, and rituximab in relapsed and refractory lymphoma: the Alliance for Clinical Trials in Oncology A051201 and A051202 phase 1 trials. Lancet Haematol. 2017;4(4):e176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barr PM, Saylors GB, Spurgeon SE, Cheson BD, Greenwald DR, O’Brien SM, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma S, Chan RJ, Gu L, et al. Impact of idelalisib treatment interruption with or without dose reduction on outcomes in relapsed / refractory indolent non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood. 2019;134(Supplement_1):5468–5468.

    Google Scholar 

  45. Ma S, Chan RJ, Ye W, et al. Survival outcomes following idelalisib interruption in the treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood. 2018;132(Suppl 1):3149–3149.

    Google Scholar 

  46. Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knight ZA, Gonzalez B, Feldman ME, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006;125(4):733–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Symons JD, McMillin SL, Riehle C, et al. Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure. Circ Res. 2009;104(9):1085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mensah FA, Blaize JP, Bryan LJ. Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. OncoTargets Ther. 2018;11:4817–27.

    Article  Google Scholar 

  50. Zinzani PL, Santoro A, Mollica L, et al. Copanlisib, a PI3K inhibitor, demonstrates a favorable long-term safety profile in a pooled analysis of patients with hematologic malignancies. Blood. 2019;134(Supplement_1):4009–4009.

    Google Scholar 

  51. Keating KN, Hiemeyer F, Garcia-Vargas JE, Childs BH, Dreyling MH, Zinzani PL. Patient-reported outcomes from a phase 2 study of copanlisib in patients with relapsed/refractory indolent B-cell non-Hodgkin lymphoma (iNHL). J Clin Oncol. 2017;35(15_suppl):e18123-e18123.

    Article  Google Scholar 

  52. Burris HA 3rd, Flinn IW, Patel MR, et al. Umbralisib, a novel PI3Kdelta and casein kinase-1epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018;19(4):486–96.

    Article  CAS  PubMed  Google Scholar 

  53. Davids MS, Kim HT, Nicotra A, Savell A, Francoeur K, Hellman JM, et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: a multicentre phase 1-1b study. Lancet Haematol. 2019;6(1):e38–47.

    Article  PubMed  Google Scholar 

  54. Nastoupil LJ, Lunning MA, Vose JM, Schreeder MT, Siddiqi T, Flowers CR, et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: a phase 1 dose escalation and expansion trial. Lancet Haematol. 2019;6(2):e100–9.

    Article  PubMed  Google Scholar 

  55. Brown JR, Hamadani M, Hayslip J, et al. Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial. Lancet Haematol. 2018;5(4):e170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Soumerai JD, Pagel JM, Jagadeesh D, et al. Initial results of a dose escalation study of a selective and structurally differentiated PI3Kδ inhibitor, ME-401, in relapsed/refractory (R/R) follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). J Clin Oncol. 2018;36(15_suppl):7519–7519.

    Article  Google Scholar 

  57. Horwitz SM, Moskowitz AJ, Jacobsen ED, et al. The combination of duvelisib, a PI3K-δ,γ inhibitor, and romidepsin is highly active in relapsed/refractory peripheral T-cell lymphoma with low rates of transaminitis: results of parallel multicenter, phase 1 combination studies with expansion cohorts. Blood. 2018;132(Suppl 1):683–683.

    Google Scholar 

  58. Zinzani P, Samaniego F, Jurczak W, et al. Umbralisib monotherapy demonstrates efficacy and safety in patients with relapsed/refractory marginal zone lymphoma: a multicenter, open-label, registration directed phase 2 study. Hematol Oncol. 2019;37(S2):182–3.

    Article  Google Scholar 

  59. Flinn IW, Hillmen P, Montillo M, Nagy Z, Illés Á, Etienne G, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018;132(23):2446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jones JA, Robak T, Brown JR, Awan FT, Badoux X, Coutre S, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol. 2017;4(3):e114–26.

    Article  PubMed  Google Scholar 

  61. • Cuneo A, Barosi G, Danesi R, et al. Management of adverse events associated with idelalisib treatment in chronic lymphocytic leukemia and follicular lymphoma: a multidisciplinary position paper. Hematol Oncol. 2019;37(1):3–14 Useful review addressing the management of adverse events encountered with idelalisib in CLL and FL.

    Article  PubMed  Google Scholar 

  62. • Cheson BD, O’Brien S, Ewer MS, et al. Optimal management of adverse events from copanlisib in the treatment of patients with non-Hodgkin lymphomas. Clin Lymphoma Myeloma Leuk. 2019;19(3):135–41 Useful review addressing the management of adverse events encountered with copanlisib in NHL.

    Article  PubMed  Google Scholar 

  63. Philip AZ. Idelalisib and rituximab in 17p deletion-positive splenic marginal zone lymphoma. J Natl Compr Cancer Netw. 2018;16(3):230–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit Assouline MD, MSc.

Ethics declarations

Conflict of Interest

Vladimir Sapon-Cousineau declares that he has no conflict of interest.

Sasha Sapon-Cousineau declares that she has no conflict of interest.

Sarit Assouline has received speaker’s honoraria from Janssen and AbbVie, and has received compensation from Janssen, Roche Canada, and Pfizer for participation on advisory boards.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapon-Cousineau, V., Sapon-Cousineau, S. & Assouline, S. PI3K Inhibitors and Their Role as Novel Agents for Targeted Therapy in Lymphoma. Curr. Treat. Options in Oncol. 21, 51 (2020). https://doi.org/10.1007/s11864-020-00746-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00746-8

Keywords

Navigation