Skip to main content

Advertisement

Log in

Human Colon Organoids and Other Laboratory Strategies to Enhance Patient Treatment Selection

  • Lower Gastrointestinal Cancers (AB Benson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Though many advancements in personalized medicine have been made, better methods are still needed to predict treatment benefit for patients with colorectal cancer. Patient-derived cancer organoids (PDCOs) are a major advance towards true personalization of treatment strategies. A growing body of literature is demonstrating the feasibility of PDCOs as an accurate and high-throughput preclinical tool for patient treatment selection. Many studies demonstrate that these cultures are readily generated and represent the tumors they were derived from phenotypically and based on their mutation profile. This includes maintenance of the driver muatations giving the cancer cells a selective growth advantage, and also heterogeneity, including molecular and metabolic heterogeneity. Additionally, PDCOs are now being utilized to develop patient biospecimen repositories, perform high to moderate-throughput drug screening, and to potentially predict treatment response for individual patients that are undergoing anti-cancer treatments. In order to develop PDCOs as a true clinical tool, further studies are required to determine the reproducibility and accuracy of these models to predict patient response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Common Cancer Sites - Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/common.html. Accessed November 1, 2019.

  2. Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Cancer Netw. 2018;16(4):359–69.

    Google Scholar 

  3. Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med. 2017;23(9):1028–35.

    CAS  PubMed  Google Scholar 

  4. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7(5):462–77.

    PubMed  PubMed Central  Google Scholar 

  5. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352(18):1851–60.

    CAS  PubMed  Google Scholar 

  7. Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol. 2014;53(7):852–64.

    CAS  PubMed  Google Scholar 

  8. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381(17):1632–43.

    CAS  PubMed  Google Scholar 

  9. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6(2):147–53.

    CAS  PubMed  Google Scholar 

  10. Tveit KM, Pihl A. Do cell lines in vitro reflect the properties of the tumours of origin? A study of lines derived from human melanoma xenografts. Br J Cancer. 1981;44(6):775–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.

    CAS  PubMed  Google Scholar 

  13. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69–70:29–41.

    PubMed  Google Scholar 

  14. Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011;20(51):4–7.

  15. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31(2):108–15.

    CAS  PubMed  Google Scholar 

  16. Maritan SM, Lian EY, Mulligan LM. An efficient and flexible cell aggregation method for 3d spheroid production. J Vis Exp. 2017;2017(121):1–13.

  17. Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010;5(4):291–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014;4:6468.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Katsiampoura A, Raghav K, Jiang ZQ, Menter DG, Varkaris A, Morelli MP, et al. Modeling of patient-derived xenografts in colorectal cancer. Mol Cancer Ther. 2017;16(7):1435–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A. 2015;112(43):13308–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.

    PubMed  PubMed Central  Google Scholar 

  24. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.

    CAS  PubMed  Google Scholar 

  25. Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H, Tsujii M, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci U S A. 2011;108(15):6235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. • Pasch CA, Favreau PF, Yueh AE, Babiarz CP, Gillette AA, Sharick JT, et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res. 2019;25(17):5376–87 This paper describes in great detail how PDCOs reflect patient tumor biology. This paper also highlights a novel technique in measuring organoid response, OMI, that can accurately predict patient response.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeppesen M, Hagel G, Glenthoj A, Vainer B, Ibsen P, Harling H, et al. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS One. 2017;12(9):e0183074.

    PubMed  PubMed Central  Google Scholar 

  28. Schutte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun. 2017;8:14262.

    PubMed  PubMed Central  Google Scholar 

  29. Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR, Mohammed S. Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Rep. 2017;18(1):263–74.

    CAS  PubMed  Google Scholar 

  30. • Árnadóttir SS, Jeppesen M, Lamy P, Bramsen JB, Nordentoft I, Knudsen M, Vang S, Madsen MR, Thastrup O, Thastrup J, Andersen CL. Characterization of genetic intratumor heterogeneity in colorectal cancer and matching patient-derived spheroid cultures. Mol Oncol. 2018;12(1):132–147. The authors describe the heterogeneity maintained by PDCOs in culture. The authors also make an argument for doing biopsies of multiple tumor sites to capture the full heterogeneity of the tumor.

  31. • Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6 The authors measure response in PDCOs and clinical response in patients for a number of therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. • Ganesh K, Wu C, O’Rourke KP, Szeglin BC, Zheng Y, Sauvé C-EG, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 2019;25(10):1607–14 The authors describe the heterogeneity maintained by PDCOs in culture. The authors also make an argument for doing biopsies of multiple tumor sites to capture the full heterogeneity of the tumor.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972–88.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Broutier L, Mastrogiovanni G, Verstegen MMA, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep. 2019;9(1):7103.

    PubMed  PubMed Central  Google Scholar 

  36. • Ooft SN, Weeber F, Dijkstra KK, CM ML, Kaing S, van Werkhoven E, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11(513):eaay2574-eaay This paper describes correlation between response in PDCOs measured by CellTiter-Glo and clinical response for patients treated with irinotecan.

    Google Scholar 

  37. Hagemann J, Jacobi C, Hahn M, Schmid V, Welz C, Schwenk-Zieger S, et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer Res. 2017;37(5):2201–10.

    CAS  PubMed  Google Scholar 

  38. Ashley N, Jones M, Ouaret D, Wilding J, Bodmer WF. Rapidly derived colorectal cancer cultures recapitulate parental cancer characteristics and enable personalized therapeutic assays. J Pathol. 2014;234(1):34–45.

    CAS  PubMed  Google Scholar 

  39. Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EES, Houwen RHJ, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HGM, de Winter-deGroot KM, Clevers H, van der Ent CK, Beekman JM. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344).

  40. Walsh AJ, Cook RS, Skala MC. Functional optical imaging of primary human tumor organoids: development of a personalized drug screen. J Nucl Med. 2017;58(9):1367–72.

    CAS  PubMed  Google Scholar 

  41. Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, et al. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 2013;73(20):6164–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014;74(18):5184–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharick JT, Jeffery JJ, Karim MR, Walsh CM, Esbona K, Cook RS, et al. Cellular metabolic heterogeneity in vivo is recapitulated in tumor organoids. Neoplasia (United States). 2019;21(6):615–26.

    CAS  Google Scholar 

  44. Walsh AJ, Skala MC. Optical metabolic imaging quantifies heterogeneous cell populations. Biomed Opt Express. 2015;6(2):559.

    PubMed  PubMed Central  Google Scholar 

  45. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta Rev Cancer. 2010;1805(1):105–17.

    CAS  Google Scholar 

  46. Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 2019;17(1):1–21.

    Google Scholar 

  47. Varone A, Xylas J, Quinn KP, Pouli D, Sridharan G, McLaughlin-Drubin ME, et al. Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues. Cancer Res. 2014;74(11):3067–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shah AT, Heaster TM, Skala MC. Metabolic imaging of head and neck cancer organoids. PLoS One. 2017;12(1):1–17.

    Google Scholar 

  49. Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. Pancreas. 2016;45(6):863–9.

    CAS  PubMed  Google Scholar 

  50. Fong ELS, Toh TB, Yu H, Chow EKH. 3D culture as a clinically relevant model for personalized medicine. SLAS Technol. 2017;22(3):245–53.

  51. • Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586–98.e12 In this paper, the authors recreate tumor-reactive T-cells using peripheral blood lymphocytes and organoid cultures from the same patient, laying the groundwork for studying immunotherapy in organoid cultures.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol. 2013;5(2):381–9.

    CAS  Google Scholar 

  53. • Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, et al. Ex Vivo Profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 2018;8(2):196–215 These authors have used murine-derived organoid cultures to study immunotherapy responses.

    CAS  PubMed  Google Scholar 

  54. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216–33.

    CAS  PubMed  Google Scholar 

  55. Eglen RM, Randle DH. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev Technol. 2015;13(5):262–5.

    CAS  PubMed  Google Scholar 

  56. Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69–70:1–18.

    PubMed  Google Scholar 

  57. Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016;15(11):751–69.

    CAS  PubMed  Google Scholar 

  58. Parikh AR, Leshchiner I, Elagina L, Goyal L, Levovitz C, Siravegna G, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25(9):1415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Human Cancer Models Initiative. https://www.atcc.org/hcmi. Accessed November 1, 2019.

  60. Schumacher D, Andrieux G, Boehnke K, Keil M, Silvestri A, Silvestrov M, et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. 2019.

Download references

Funding

This project was supported by NIH P30 CA014520 (Core Grant, University of Wisconsin Carbone Cancer Center), and the NIH grant R37 CA226526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin A. Deming MD.

Ethics declarations

Conflict of Interest

Katherine A. Johnson declares that she has no conflict of interest. Rebecca A. DeStefanis declares that she has no conflict of interest. Philip B. Emmerich declares that he has no conflict of interest. Patrick T. Grogan declares that he has no conflict of interest. Jeremy D. Kratz declares that he has no conflict of interest. Sarbjeet K. Makkar declares that he has no conflict of interest. Linda Clipson declares that she has no conflict of interest. Dustin A. Deming declares that he have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Lower Gastrointestinal Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, K.A., DeStefanis, R.A., Emmerich, P.B. et al. Human Colon Organoids and Other Laboratory Strategies to Enhance Patient Treatment Selection. Curr. Treat. Options in Oncol. 21, 35 (2020). https://doi.org/10.1007/s11864-020-00737-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00737-9

Keywords

Navigation