Opinion statement
Carcinoid syndrome (CS) is a complex disorder caused by functional neuroendocrine tumors (NETs). This debilitating disease is characterized by hyper-secretion of biologically active substances eliciting major hormonal symptoms burden and fibrotic changes that are often challenging for management. There have been a number of insights that have substantially advanced treatments since the introduction of somatostatin analogs (SSAs). Second-line treatments are needed in a substantial proportion of patients with advanced disease that have uncontrolled hormone secretion on the highest labeled doses of SSAs. International guidelines suggest several available options including dose escalation of SSAs, interferon alpha, everolimus, radionuclide therapy, liver-directed therapies, and the novel tryptophan hydroxylase 1 inhibitor, telotristat ethyl. The clear preference of one second-line therapy over the other is not stated since their relative and long-term efficacy are largely unknown, and standardized approach of hormonal response assessment is lacking in the literature. In the clinical setting, the treatment of CS is guided in conjunction with patients’ performance status, tumor origin, grade, stage, and growth rate, with regard to both anti-hormonal, as well as anti-proliferative effect. There is an unmet need for further well-designed randomized placebo-controlled and head-to-head studies that systematically assess CS symptom control and biochemical response following a specific intervention.
Similar content being viewed by others
References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Jensen RT, Norton JA, Oberg K. In: Feldman M, Friedman LS, Brandt LJ, editors. Neuroendocrine tumors in Sleisenger and Fordtran’s gastrointestinal and liver diseases, edn tenth. Philadelphia: Elsevier Saunders; 2016. p. 501–41.
Boutzios G, Kaltsas G. Clinical syndromes related to gastrointestinal neuroendocrine neoplasms. Front Horm Res. 2015;44:40–57.
Van Der Lely AJ, Herder WW. Carcinoid syndrome: diagnosis and medical management. Arq Bras Endocrinol Metabol. 2005;49(5):850–60.
• Halperin DM, Shen C, Dasari A, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol. 2017;18:525–34. Recent extensive study on the frequency and epidiomology of carcinoid syndrome. A population-based analysis focusing on epidemiology, clinical characteristics and survival of carcinoid syndrome patients.
Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017.
Druce M, Rockall A, Grossman AB. Fibrosis and carcinoid syndrome: from causation to future therapy. Nat Rev Endocrinol. 2009;5(5):276.
Ardill JE, Armstrong L, Smye M, et al. Neuroendocrine tumours of the small bowel: interpretation of raised circulating chromogranin A, urinary 5 hydroxy indole acetic acid and circulating neurokinin A. QJM. 2016;109:111–5.
Tohmola N, Itkonen O, Sane T, et al. Analytical and preanalytical validation of a new mass spectrometric serum 5-hydroxyindoleacetic acid assay as neuroendocrine tumor marker. Clin Chim Acta. 2014;428:38–43.
Adaway JE, Dobson R, Walsh J, et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann Clin Biochem. 2016;53:554–60.
Tellez MR, Mamikunian G, O’Dorisio TM, et al. A single fasting plasma 5-HIAA value correlates with 24-hour urinary 5-HIAA values and other biomarkers in midgut neuroendocrine tumors (NETs). Pancreas. 2013;42:405–10.
Chuang CC, Bhurke S, Chen SY, Brulais S, Gabriel S. Clinical characteristics, treatment patterns, and economic burden in patients treated for neuroendocrine tumors in the United States: a retrospective cohort study. J Med Econ. 2015;18(2):126–36.
Fröjd C, Larsson G, Lampic C, Von Essen L. Health related quality of life and psychosocial function among patients with carcinoid tumours. A longitudinal, prospective, and comparative study. Health Qual Life Outcomes. 2007;5(1):18.
Broder MS, Chang E, Romanus D, Cherepanov D, Neary MP. Healthcare and economic impact of diarrhea in patients with carcinoid syndrome. World Journal of Gastroenterol. 2016;22(6):2118.
Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: from monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metabol. 2016;30(1):59–77.
Laval VR, Pavel M, Steffen IG, Baur AD, Dilz LM, Fischer C, et al. Mesenteric fibrosis in midgut neuroendocrine tumors: functionality and radiological features. Neuroendocrinology. 2018;106(2):139–47.
Laskaratos FM, Rombouts K, Caplin M, Toumpanakis C, Thirlwell C, Mandair D. Neuroendocrine tumors and fibrosis: an unsolved mystery? Cancer. 2017;123(24):4770–90.
Grozinsky-Glasberg S, Grossman AB, Gross DJ. Carcinoid heart disease: from pathophysiology to treatment—‘Something in the Way It Moves’. Neuroendocrinology. 2015;101:263–73.
•• Davar J, Connolly HM, Caplin ME, Pavel M, Zacks J, Bhattacharyya S, et al. Diagnosing and managing carcinoid heart disease in patients with neuroendocrine tumors: an expert statement. J Am Coll Cardiol. 2017;69(10):1288–304. A multidisciplinary consensus statement on management of carcinoid heart disease based on an evidence-based review of the published data and on the expert opinion.
Dobson R, Burgess MI, Banks M, Pritchard DM, Vora J, Valle JW, et al. The association of a panel of biomarkers with the presence and severity of carcinoid heart disease: a cross-sectional study. PLoS One. 2013;8(9):e73679.
Pavel M, Costa F, Capdevila J, Gross D, Kianmanesh R, Krenning E, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.
Strosberg JR, Halfdanarson TR, Bellizzi AM, Chan JA, Dillon J, Heaney AP, et al. The North American Neuroendocrine Society (NANETS) consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas. 2017;46(6):707.
Dimitriadis GK, Weickert MO, Randeva HS, Kaltsas G, Grossman A. Medical management of secretory syndromes related to gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2016;23(9):R423–36.
Qureshi SA, Burch N, Druce M, Hattersley JG, Khan S, Gopalakrishnan K, et al. Screening for malnutrition in patients with gastro-entero-pancreatic neuroendocrine tumours: a cross-sectional study. BMJ Open. 2016;6(5):e010765.
Maasberg S, Knappe-Drzikova B, Vonderbeck D, Jann H, Weylandt KH, Grieser C, et al. Malnutrition predicts clinical outcome in patients with neuroendocrine neoplasia. Neuroendocrinology. 2017;104(1):11–25.
Jin XF, Spampatti MP, Spitzweg C, Auernhammer CJ. Supportive therapy in gastroenteropancreatic neuroendocrine tumors: often forgotten but important. Rev Endocr Metab Disord. 2018;1:1–4.
Clement DS, Tesselaar ME, van Leerdam ME, Srirajaskanthan R, Ramage JK. Nutritional and vitamin status in patients with neuroendocrine neoplasms. World J Gastroenterol. 2019;25(10):1171.
Altieri B, Barrea L, Modica R, Muscogiuri G, Savastano S, Colao A, et al. Nutrition and neuroendocrine tumors: an update of the literature. Rev Endocr Metabol Disord. 2018;19(2):159–67.
Bouma G, van Faassen M, Kats-Ugurlu G, de Vries EG, Kema IP, Walenkamp AM. Niacin (Vitamin B3) supplementation in patients with serotonin-producing neuroendocrine tumor. Neuroendocrinology. 2016;103(5):489–94.
Barrea L, Altieri B, Muscogiuri G, Laudisio D, Annunziata G, Colao A, et al. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients. 2018;10(12):1854.
Alonso-Gordoa T, Capdevila J, Grande E. GEP–NETs UPDATE: Biotherapy for neuroendocrine tumours. Eur J Endocrinol. 2015;172(1):R31–46.
Bousquet C, Lasfargues C, Chalabi M, Billah SM, Susini C, Vezzosi D, et al. Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. J Clin Endocrinol Metab. 2012;97(3):727–37.
Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33.
Pavel M, Valle JW, Eriksson B, Rinke A, Caplin M, Chen J, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: systemic therapy-biotherapy and novel targeted agents. Neuroendocrinology. 2017;105(3):266–80.
Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63.
Arnold R, Wittenberg M, Rinke A, Schade-Brittinger C, Aminossadati B, Ronicke E, Gress TM, Mueller HH, PROMID Study Group. Placebo controlled, double blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results on long-term survival.
Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016;23(3):191.
• Hofland J, Martínez AD, Zandee WT, de Herder WW. Management of carcinoid syndrome: a systematic review and meta-analysis. Endocr Relat Cancer. 2019;1 A literature review and meta-analysis regarding pharmacological therapies in CS, focusing on treatment efficacy in terms of symptomatic and biochemical response.
Strosberg JR, Benson AB, Huynh L, Duh MS, Goldman J, Sahai V, et al. Clinical benefits of above-standard dose of octreotide LAR in patients with neuroendocrine tumors for control of carcinoid syndrome symptoms: a multicenter retrospective chart review study. Oncologist. 2014;19(9):930–6.
Al-Efraij K, Aljama MA, Kennecke HF. Association of dose escalation of octreotide long-acting release on clinical symptoms and tumor markers and response among patients with neuroendocrine tumors. Cancer Med. 2015;4(6):864–70.
Ferolla P, Faggiano A, Grimaldi F, Ferone D, Scarpelli G, Ramundo V, et al. Shortened interval of long-acting octreotide administration is effective in patients with well-differentiated neuroendocrine carcinomas in progression on standard doses. J Endocrinol Investig. 2012;35(3):326–31.
O’Toole D, Ducreux M, Bommelaer G, Wemeau JL, Bouché O, Catus F, et al. Treatment of carcinoid syndrome: a prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer. 2000;88(4):770–6.
Wolin EM, Jarzab B, Eriksson B, Walter T, Toumpanakis C, Morse MA, et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Dev Ther. 2015;9:5075.
Oberg K. Interferon in the management of neuroendocrine GEP-tumors: a review. Digestion. 2000;62:92.
Arnold R, Rinke A, Klose KJ, Müller HH, Wied M, Zamzow K, et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol. 2005;3(8):761–71.
Veenhof CH, de Wit R, Taal BG, Dirix LY, Wagstaff J, Hensen A, et al. A dose-escalation study of recombinant interferon-alpha in patients with a metastatic carcinoid tumour. Eur J Cancer. 1992;28(1):75–8.
Di Bartolomeo M, Bajetta E, Buzzoni R, Mariani L, Carnaghi C, Somma L, et al. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors: a study by the Italian Trials in Medical Oncology Group. Cancer. 1996;77(2):402–8.
Nobin A, Lindblom A, Marnsson B, Sundberg M. Interferon treatment in patients with malignant carcinoids. Acta Oncol. 1989;28(3):445–9.
McKinney J, Knappskog PM, Haavik J. Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem. 2005;92(2):311–20.
Amireault P, Sibon D, Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci. 2012;4(1):64–71.
Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol. 2013;591(23):5939–57.
Engelman K, Lovenberg W, Sjoerdsma A. Inhibition of serotonin synthesis by para-chlorophenylalanine in patients with the carcinoid syndrome. N Engl J Med. 1967;277(21):1103–8.
Kulke MH, O’Dorisio T, Phan A, Bergsland E, Law L, Banks P, et al. Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014;21(5):705–14.
European Medicines Agency. Xermelo, INN-Telotristat. Summary of product characteristics. Available from: https://www.ema.europa.eu/docs/en_GB/document./WC500237107.pdf. Accessed January, 2019.
Pavel M, Hörsch D, Caplin M, Ramage J, Seufferlein T, Valle J, et al. Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab. 2015;100(4):1511–9.
Kulke MH, Horsch D, Caplin ME, et al. Telotristat Ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome. J Clin Oncol. 2017;35:14–23.
•• Pavel M, Gross DJ, Benavent M, Perros P, Srirajaskanthan R, Warner RR, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018;25(3):309–22 A randomized, controlled phase 3 study, assessing safety and efficacy of telotristat ethyl in CS symptomatic patients.
Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.
Chan J, Kulke M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options in Oncol. 2014;15(3):365–79.
Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26(26):4311.
Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.
Bergsma H, van Vliet EI, Teunissen JJ, Kam BL, de Herder WW, Peeters RP, et al. Peptide receptor radionuclide therapy (PRRT) for GEP-NETs. Best Pract Res Clin Gastroenterol. 2012;26(6):867–81.
Brabander T, Teunissen JJ, Van Eijck CH, Franssen GJ, Feelders RA, de Herder WW, et al. Peptide receptor radionuclide therapy of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2016;30(1):103–14.
Cives M, Strosberg J. Radionuclide therapy for neuroendocrine tumors. Curr Oncol Rep. 2017;19(2):9.
•• Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35 A randomized, controlled trial, evaluating the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced midgut NETs, who progressed under SSA treatment.
Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578.
Foster DS, Jensen R, Norton JA. Management of liver neuroendocrine tumors in 2018. JAMA Oncol. 2018;4(11):1605–6.
Grozinsky-Glasberg S, Kaltsas G, Kaltsatou M, Lev-Cohain N, Klimov A, Vergadis V, et al. Hepatic intra-arterial therapies in metastatic neuroendocrine tumors: lessons from clinical practice. Endocrine. 2018;60(3):499–509.
Sarmiento JM, Que FG. Hepatic surgery for metastases from neuroendocrine tumors. Surg Oncol Clin. 2003;12(1):231–42.
Saxena A, Chua TC, Perera M, Chu F, Morris DL. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surg Oncol. 2012;21(3):e131–41.
Eriksson J, Stålberg P, Nilsson A, Krause J, Lundberg C, Skogseid B, et al. Surgery and radiofrequency ablation for treatment of liver metastases from midgut and foregut carcinoids and endocrine pancreatic tumors. World J Surg. 2008;32(5):930–8.
Drougas JG, Anthony LB, Blair TK, Lopez RR, Wright JK Jr, Chapman WC, et al. Hepatic artery chemoembolization for management of patients with advanced metastatic carcinoid tumors. Am J Surg. 1998;175(5):408–12.
Strosberg JR, Choi J, Cantor AB, Kvols LK. Selective hepatic artery embolization for treatment of patients with metastatic carcinoid and pancreatic endocrine tumors. Cancer Control. 2006;13(1):72–8.
Pericleous M, Caplin ME, Tsochatzis E, Yu D, Morgan-Rowe L, Toumpanakis C. Hepatic artery embolization in advanced neuroendocrine tumors: efficacy and long-term outcomes. Asia Pac J Clin Oncol. 2016;12(1):61–9.
Nazario J, Gupta S. Transarterial liver-directed therapies of neuroendocrine hepatic metastases. Semin Oncol. 2010;37(2):118–26 WB Saunders.
Pitt SC, Knuth J, Keily JM, McDermott JC, Weber SM, Chen H, et al. Hepatic neuroendocrine metastases: chemo-or bland embolization? J Gastrointest Surg. 2008;12(11):1951–60.
Osborne DA, Zervos EE, Strosberg J, Boe BA, Malafa M, Rosemurgy AS, et al. Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors. Ann Surg Oncol. 2006;13(4):572–81.
Fan ST, Le Treut YP, Mazzaferro V, Burroughs AK, Olausson M, Breitenstein S, et al. Liver transplantation for neuroendocrine tumour liver metastases. HPB. 2015;17(1):23–8.
Keskin O, Yalcin S. Carcinoid crisis in the intensive care unit. Oncol Crit Care. 2019:1–7.
Kwon DH, Paciorek A, Mulvey CK, Chan H, Fidelman N, Meng L, et al. Periprocedural management of patients undergoing liver resection or embolotherapy for neuroendocrine tumor metastases. Pancreas. 2019;48(4):496–503.
Woltering EA, Wright AE, Stevens MA, Wang YZ, Boudreaux JP, Mamikunian G, et al. Development of effective prophylaxis against intraoperative carcinoid crisis. J Clin Anesth. 2016;32:189–93.
Condron ME, Pommier SJ, Pommier RF. Continuous infusion of octreotide combined with perioperative octreotide bolus does not prevent intraoperative carcinoid crisis. Surgery. 2016;159(1):358–67.
Massimino K, Harrskog O, Pommier S, Pommier R. Octreotide LAR and bolus octreotide are insufficient for preventing intraoperative complications in carcinoid patients. J Surg Oncol. 2013;107(8):842–6.
• Condron ME, Jameson NE, Limbach KE, Bingham AE, Sera VA, Anderson RB, et al. A prospective study of the pathophysiology of carcinoid crisis. Surgery. 2019;165(1):158–65 A prospective study on the pathophysiology of intraoperative carcinoid crisis.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Kira Oleinikov, Shani Avniel-Polak, David J. Gross, and Simona Grozinsky-Glasberg declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Neuroendocrine Cancers
Rights and permissions
About this article
Cite this article
Oleinikov, K., Avniel-Polak, S., Gross, D.J. et al. Carcinoid Syndrome: Updates and Review of Current Therapy. Curr. Treat. Options in Oncol. 20, 70 (2019). https://doi.org/10.1007/s11864-019-0671-0
Published:
DOI: https://doi.org/10.1007/s11864-019-0671-0