Opinion statement
Cardiac masses and tumors are a heterogenous group of disorders and include primary tumors (both benign and malignant), metastatic disease, and numerous masquerades such as thrombus. Clinical presentation ranges from incidental discovery on imaging tests ordered for other reasons to life-threatening presentations such as cardiac tamponade, arrhythmia, obstruction, and systemic embolization. Of the available imaging modalities, cardiac MRI is generally the most useful for assessment and helps to delineate the relevant anatomy. Due to the technical difficulties and risk of biopsy of cardiac masses, a presumptive diagnosis is typically made using imaging techniques with surgery serving both a diagnostic and curative role. Because these conditions can vary widely in their management, we recommend early involvement of a multidisciplinary group which should include a cardiologist, cardiac surgeon, and oncologist.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Al-Mamgani A, Baartman L, Baaijens M, et al. Cardiac metastases. Int J Clin Oncol. 2008;13:369–72.
Klatt EC, Heitz DR. Cardiac metastases. Cancer. 1990;65:1456–9.
Primary tumors of the heart. In Bonow RO, Mann DL, Zipes DP, Libby P (eds): Braunwald’s heart disease. 9th ed. Philadelphia, Elsevier Saunders, 2011, pp 1638–1650.
Cardiac tumors. In Crawford MH, DiMarco JP and Paulus WJ (eds): Cardiology. 3rd ed. Philadelphia, Elsevier Saunders, 2010, pp 1743–1751.
Stollberger C, Chnupa P, Kronik G, Brainin M, Finsterer J, Schneider B, et al. Transesophageal echocardiography to assess embolic risk in patients with atrial fibrillation. ELAT Study Group. Embolism in left atrial thrombi. Ann Intern Med. 1998;128:630–8.
Sharma ND, McCullough PA, Philbin EF, Weaver WD. Left ventricular thrombus and subsequent thromboembolism in patients with severe systolic dysfunction. Chest. 2000;117:314–20.
Gertner E, Leatherman JW. Intracardiac mural thrombus mimicking atrial myxoma in the antiphospholipid syndrome. J Rheumatol. 1992;19:1293–8.
Kirkpatrick JN, Wong T, Bednarz JE, Spencer KT, Sugeng L, Ward RP, et al. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J Am Coll Cardiol. 2004;43:1412–9.
Kassop D, Donovan MS, Cheezum MK, Nguyen BT, Gambill NB, Blankstein R, et al. Cardiac masses on cardiac CT: a review. Curr Cardiovasc Imaging Rep. 2014;7:9281.
• Giusca S, Mereles D, Ochs A, Buss S, Andre F, Seitz S, et al. Incremental value of cardiac magnetic resonance for the evaluation of cardiac tumors in adults: experience of a high volume tertiary cardiology centre. Int J Card Imaging. 2017;33:879–88 This is a retrospective analysis of a large number of cardiac masses evaluated by cardiac MRI and shows superior mass identification as compared with echocardiography.
Nazarian S, Hansford R, Rahsepar AA, Weltin V, McVeigh D, Gucuk Ipek E, et al. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med. 2017;377:2555–64.
Pazos-Lopez P, Pozo E, Siqueira ME, Garcia-Lunar I, Cham M, Jacobi A, et al. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2014;7:896–905.
Chan AT, Plodkowski AJ, Pun SC, Lakhman Y, Halpenny DF, Kim J, et al. Prognostic utility of differential tissue characterization of cardiac neoplasm and thrombus via late gadolinium enhancement cardiovascular magnetic resonance among patients with advanced systemic cancer. J Cardiovasc Magn Reson. 2017;19:76.
Ganame J, Wright J, Bogaert J. Cardiac lipoma diagnosed by cardiac magnetic resonance imaging. Eur Heart J. 2008;29:697.
Rahbar K, Seifarth H, Schafers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53:856–63.
Chan ATF, J. Perez Johnston, R. Plodkowski, A. Pollie, M. Moskowitz, C. Steingart, R. Weinsaft, J.W. Biologic and prognostic validation of delayed enhancement (DE-) CMR for cancer-associated cardiac masses - multimodality comparison to positron emission tomography (PET) [ABSTRACT]. Society for Cardiovascular Magnetic Resonance Scientific Sessions. 2018:22.
Klein MA, Scalcione LR, Youn T, Shah RA, Katz DS, Sung WW, et al. Intensely hypermetabolic lipomatous hypertrophy of the interatrial septum on 18-FDG PET with MRI and CT correlation. Clin Nucl Med. 2010;35:972–3.
Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Kohler J, et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med. 2015;56:255–60.
Theologides A. Neoplastic cardiac tamponade. Semin Oncol. 1978;5:181–92.
Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Randomized comparison of low-molecular-weight heparin versus oral anticoagulant therapy for the prevention of recurrent venous thromboembolism in patients with cancer I. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349:146–53.
Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378:615–24.
Srichai MB, Junor C, Rodriguez LL, Stillman AE, Grimm RA, Lieber ML, Weaver JA, Smedira NG and White RD. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152:75-84.
Hong YJ, Hur J, Kim YJ, Lee HJ, Nam JE, Kim HY, Choe KO and Choi BW. The usefulness of delayed contrast-enhanced cardiovascular magnetic resonance imaging in differentiating cardiac tumors from thrombi in stroke patients. Int J Cardiovasc Imaging. 2011;27 Suppl 1:89-95.
Weinsaft JW, Kim HW, Crowley AL, Klem I, Shenoy C, Van Assche L, Brosnan R, Shah DJ, Velazquez EJ, Parker M, Judd RM and Kim RJ. LV thrombus detection by routine echocardiography: insights into performance characteristics using delayed enhancement CMR. JACC Cardiovasc Imaging. 2011;4:702-12.
Chen-Milhone CS, Chakravarthy Potu K, Mungee S. Cardiac aspergilloma: a rare case of a cardiac mass involving the native tricuspid valve, right atrium, and right ventricle in an immunocompromised patient. Case Rep Cardiol. 2018;2018:6927436.
Biller J, Challa VR, Toole JF, Howard VJ. Nonbacterial thrombotic endocarditis. A neurologic perspective of clinicopathologic correlations of 99 patients. Arch Neurol. 1982;39:95–8.
Tower-Rader A, Kwon D. Pericardial masses, cysts and diverticula: a comprehensive review using multimodality imaging. Prog Cardiovasc Dis. 2017;59:389–97.
Yared K, Baggish AL, Picard MH, Hoffmann U, Hung J. Multimodality imaging of pericardial diseases. JACC Cardiovasc Imaging. 2010;3:650–60.
Frank H, Globits S. Magnetic resonance imaging evaluation of myocardial and pericardial disease. J Magn Reson Imaging. 1999;10:617–26.
Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest. 2003;124:2068–73.
Reynen K. Frequency of primary tumors of the heart. Am J Cardiol. 1996;77:107.
Centofanti P, Di Rosa E, Deorsola L, et al. Primary cardiac neoplasms: early and late results of surgical treatment in 91 patients. Ann Thorac Surg. 1999;68:1236–41.
Sarjeant JM, Butany J, Cusimano RJ. Cancer of the heart: epidemiology and management of primary neoplasms and metastases. Am J Cardiovasc Drugs. 2003;3:407–21.
Pinede L, Duhaut P, Loire R. Clinical presentation of left atrial cardiac myxoma: a series of 112 consecutive cases. Medicine. 2001;80:159–72.
McAllister H, Fenoglio J. Tumors of the cardiovascular system. In: Hartmannn W, Cowan W, editors. Atlas of tumor pathology. Washington, DC: Armed Forces Institute of Pathology; 1978. p. 1–20.
Reynen K. Cardiac myxomas. N Engl J Med. 1995;333:1610–7.
Carney J, Gordon H, Carpenter P, Shenoy B, Go V. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985;64(4):270–83.
McCarthy PM, Piehler JM, Schaff HV, Pluth JR, Orszulak TA, Vidaillet HJ Jr, et al. The significance of multiple, recurrent, and “complex” cardiac myxomas. J Thorac Cardiovasc Surg. 1986;91:389–96.
Waller DA, Ettles DF, Saunders NR, Williams G. Recurrent cardiac myxoma: the surgical implications of two distinct groups of patients. Thorac Cardiovasc Surg. 1989;37:226–30.
Mariscalco G, Bruno VD, Borsani P, Dominici C, Sala A. Papillary fibroelastoma: insight to a primary cardiac valve tumor. J Card Surg. 2010;25:198–205.
Yee HC, Nwosu JE, Lii AD, Velasco M, Millman A. Echocardiographic features of papillary fibroelastoma and their consequences and management. Am J Cardiol. 1997;80:811–4.
Jain D, Maleszewski JJ, Halushka MK. Benign cardiac tumors and tumorlike conditions. Ann Diagn Pathol. 2010;14:215–30.
Freedom RM, Lee KJ, MacDonald C, Taylor G. Selected aspects of cardiac tumors in infancy and childhood. Pediatr Cardiol. 2000;21:299–316.
Uzun O, Wilson DG, Vulanic GM, et al. Cardiac tumours in children. Orphanet J Rare Dis. 2007;2:11.
Gunther T, Schreiber C, Noebauer C, Eicken A, Lange R. Treatment strategies for pediatric patients with primary cardiac and pericardial tumors: a 30-year review. Pediatr Cardiol. 2008;29:1071–6.
Chen TW, Loong HH, Srikanthan A, et al. Primary cardiac sarcomas: a multinational retrospective review. Cancer Med 2018; 1–7.
Ramlawi B, Leja MJ, Abu Saleh WK, al Jabbari O, Benjamin R, Ravi V, et al. Surgical treatment of primary cardiac sarcomas: review of a single-institution experience. Ann Thorac Surg. 2016;101:698–702.
Hamidi M, Moody JS, Weigel TL, Kozak KR. Primary cardiac sarcoma. Ann Thorac Surg. 2010;90:176–81.
Isambert N, Ray-Coquard I, Italiano A, Rios M, Kerbrat P, Gauthier M, et al. Primary cardiac sarcomas: a retrospective study of the French Sarcoma Group. Eur J Cancer. 2014;50(1):128–36.
• Randhawa JS, Budd GT, Randhawa M, Ahluwalia M, Jia X, Daw H, et al. Primary cardiac sarcoma: 25-year Cleveland Clinic experience. Am J Clin Oncol. 2016;39(6):593–99. This is a retrospective review of 42 cases of primary cardiac sarcoma and described a benefit in patients who received multimodality therapy.
Reardon MJ, DeFelice CA, Sheinbaum R, Baldwin J. Cardiac autotransplant for surgical treatment of a malignant neoplasm. Ann Thorac Surg. 1999;67:1793–5.
•• Abu Saleh WK, Ramlawi B, Shapira OM, et al. Improved outcomes with the evolution of neoadjuvant chemotherapy approach to right heart sarcoma. Ann Thorac Surg. 2017;104(1):90–6. This is a single-center study of 133 primary cardiac sarcoma cases with a focus on the management of right-sided sarcomas. This study demonstrated a marked survival benefit with complete resection, leading to a recommendation for neoadjuvant therapy to increase the probability of achieving complete resection.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Timothy J. Poterucha owns a stock in Abbott Laboratories and AbbVie, Inc.
Jonathan Kochav declares that he has no conflict of interest.
Daniel S. O’Connor declares that he has no conflict of interest.
Gregg F. Rosner declares that he has no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Cardio-oncology
Rights and permissions
About this article
Cite this article
Poterucha, T.J., Kochav, J., O’Connor, D.S. et al. Cardiac Tumors: Clinical Presentation, Diagnosis, and Management. Curr. Treat. Options in Oncol. 20, 66 (2019). https://doi.org/10.1007/s11864-019-0662-1
Published:
DOI: https://doi.org/10.1007/s11864-019-0662-1