Skip to main content

Advertisement

Log in

Polycythemia Vera

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN), the ultimate phenotype of the JAK2 V1617F mutation, the MPN with the highest incidence of thromboembolic complications, which usually occur early in the course of the disease, and the only MPN in which erythrocytosis occurs. The classical presentation of PV is characterized by erythrocytosis, leukocytosis, and thrombocytosis, often with splenomegaly and occasionally with myelofibrosis, but it can also present as isolated erythrocytosis with or without splenomegaly, isolated thrombocytosis or isolated leukocytosis, or any combination of these. When PV is present, the peripheral blood hematocrit (or hemoglobin) determination will not accurately represent the actual volume of red cells in the body, because in PV, in contrast to other disorders causing erythrocytosis, when the red cell mass increases, the plasma volume usually increases. In fact, unless the hematocrit is greater than 59%, true erythrocytosis cannot be distinguished from pseudoerythrocytosis due to plasma volume contraction. Usually, the presence of splenomegaly or leukocytosis or thrombocytosis establishes the diagnosis. However, when a patient presents with isolated thrombocytosis and a positive JAK2 V617F assay, particularly a young woman, the possibility of PV must always be considered because of plasma volume expansion. The WHO PV diagnostic guidelines are not helpful in this situation, since the hematocrit is invariably normal and a bone marrow examination will not distinguish ET from PV. Only a direct measurement of both the red cell mass and plasma volume can establish the correct diagnosis. In managing a PV patient, it is important to remember that PV is an indolent disorder in which life span is usually measured in decades, even when myelofibrosis is present, that chemotherapy is futile in eradicating the disease but does increase the incidence of acute leukemia and that hydroxyurea is not safe in this regard nor is it antithrombotic. Phlebotomy to a sex-specific normal hematocrit is the cornerstone of therapy and there now exist safe remedies for controlling leukocytosis, thrombocytosis, and extramedullary hematopoiesis and symptoms due to inflammatory cytokines when this is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  2. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding J, Komatsu H, Iida S, et al. The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-Mpl protein due to strong amino acid polarity. Blood. 2009;114(15):3325–8.

    Article  CAS  PubMed  Google Scholar 

  4. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Williams DM, Kim AH, Rogers O, Spivak JL, Moliterno AR. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol. 2007;35(11):1641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    Article  CAS  PubMed  Google Scholar 

  8. Spivak JL, Considine M, Williams DM, et al. Two clinical phenotypes in polycythemia vera. N Engl J Med. 2014;371(9):808–17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Catani L, Zini R, Sollazzo D, et al. Molecular profile of CD34+ stem/progenitor cells according to JAK2V617F mutation status in essential thrombocythemia. Leukemia. 2009;23(5):997–1000.

    Article  CAS  PubMed  Google Scholar 

  10. Guglielmelli P, Zini R, Bogani C, et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells. 2007;25(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  11. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;376(22):2168–81. A comprehensive review of the genetics, pathophysiology, diagnosis and management of the MPN.

    Article  CAS  PubMed  Google Scholar 

  13. • Anderson LA, McMullin MF. Epidemiology of MPN: what do we know? Curr Hematol Malig Rep. 2014;9(4):340–9. A comprehensive review of the epidemiology of the MPN.

    Article  CAS  PubMed  Google Scholar 

  14. Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood. 2002;100(13):4272–90.

    Article  CAS  PubMed  Google Scholar 

  15. Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood. 2008;112(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  16. • Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714–9. A review of the driver mutations of the MPN.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112–26.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.

    Article  CAS  PubMed  Google Scholar 

  19. Busch K, Klapproth K, Barile M, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518(7540):542–6.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.

    Article  CAS  PubMed  Google Scholar 

  21. Pemmaraju N, Moliterno AR, Williams DM, Rogers O, Spivak JL. The quantitative JAK2 V617F neutrophil allele burden does not correlate with thrombotic risk in essential thrombocytosis. Leukemia. 2007;21(10):2210–2.

    Article  CAS  PubMed  Google Scholar 

  22. Cassinat B, Laguillier C, Gardin C, et al. Classification of myeloproliferative disorders in the JAK2 era: is there a role for red cell mass? Leukemia. 2008;22:452–3.

    Article  CAS  PubMed  Google Scholar 

  23. Lamy T, Devillers A, Bernard M, et al. Inapparent polycythemia vera: an unrecognized diagnosis. Am J Med. 1997;102(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  24. Broseus J, Park JH, Carillo S, Hermouet S, Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wendling F, Varlet P, Charon M, Tambourin P. MPLV: a retrovirus complex inducing an acute myeloproliferative leukemic disorder in adult mice. Virology. 1986;149(2):242–6.

    Article  CAS  PubMed  Google Scholar 

  26. Janssen JW, Anger BR, Drexler HG, Bartram CR, Heimpel H. Essential thrombocythemia in two sisters originating from different stem cell levels. Blood. 1990;75(8):1633–6.

    CAS  PubMed  Google Scholar 

  27. Taylor KM, Shetta M, Talpaz M, et al. Myeloproliferative disorders: usefulness of X-linked probes in diagnosis. Leukemia. 1989;3(6):419–22.

    CAS  PubMed  Google Scholar 

  28. Ellis JT, Peterson P, Geller SA, Rappaport H. Studies of the bone marrow in polycythemia vera and the evolution of myelofibrosis and second hematologic malignancies. Semin Hematol. 1986;23(2):144–55.

    CAS  PubMed  Google Scholar 

  29. Wasserman LR. The management of polycythaemia vera. Br J Haematol. 1971;21(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  30. Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.

    Article  CAS  PubMed  Google Scholar 

  31. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  32. Johansson PL, Safai-Kutti S, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br J Haematol. 2005;129(5):701–5.

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez-Larran A, Ancochea A, Angona A, et al. Red cell mass measurement in patients with clinically suspected diagnosis of polycythemia vera or essential thrombocythemia. Haematologica. 2012;97(11):1704–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Hernandez-Boluda JC, Pereira A, Gomez M, et al. The International Prognostic Scoring System does not accurately discriminate different risk categories in patients with post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Haematologica. 2014;99(4):e55–7. Myelofibrosis is a histologic diagnosis but it, per se, does not confer prognosis. That is the purview of the underlying.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pearson TC, Botterill CA, Glass UH, Wetherley-Mein G. Interpretation of measured red cell mass and plasma volume in males with elevated venous PCV values. Scand J Haematol. 1984;33(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  36. Wells RE, Merrill EW. Influence of flow properties of blood upon viscosity-hematocrit relationship. J Clin Investig. 1962;41(8):1591–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. •• Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35. Ruxolitinib was superior to supportive therapy, including hydroxyurea, in the treatment of polycythemia vera.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rongvaux A, Willinger T, Takizawa H, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108(6):2378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Silver RT, Gjoni S. The hematocrit value in polycythemia vera: caveat utilitor. Leuk Lymphoma. 2015;56(5):1540–1. The hematocrit cannot be relied on as an indicator of erythrocytosis if polycythemia vera is a diagnostic consideration.

    Article  PubMed  Google Scholar 

  40. Bessman JD. Microcytic polycythemia. Frequency of nonthalassemic causes. JAMA. 1977;238(22):2391–2.

    Article  CAS  PubMed  Google Scholar 

  41. Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–7.

    Article  CAS  PubMed  Google Scholar 

  42. •• Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8. JAK2 V617F can be acquired at any age but the incidence increases over age 60 as does the incidence of mutations in genes such as DNMT3a and TET2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. RJ MN, Rowland D, Roman E, Cartwright RA. Age and sex distributions of hematological malignancies in the U.K. Hematol Oncol. 1997;15(4):173–89.

    Article  Google Scholar 

  44. Stein BL, Williams DM, Wang NY, et al. Sex differences in the JAK2 V617F allele burden in chronic myeloproliferative disorders. Haematologica. 2010;95(7):1090–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moliterno AR, Williams DM, Rogers O, Isaacs MA, Spivak JL. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele burdens. Exp Hematol. 2008;36(11):1480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Swierczek SI, Drummond J, et al. Whole-exome sequencing of polycythemia vera revealed novel driver genes and somatic mutation shared by T cells and granulocytes. Leukemia. 2014;28(4):935–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gruppo Italiano SP. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med. 1995;123(9):656–64.

    Article  Google Scholar 

  48. Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med. 1998;338(9):572–80.

    Article  CAS  PubMed  Google Scholar 

  49. • Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51. Detailed analysis of the clinical features of JAK2 V617F and CALR mutations with thrombocytosis but with conflation with PV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Rotunno G, Mannarelli C, Guglielmelli P, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123(10):1552–5. Detailed analysis of the clinical features of JAK2 V617F and CALR mutations with thrombocytosis but with conflation with PV.

    Article  CAS  PubMed  Google Scholar 

  51. Dameshek W. The case for phlebotomy in polycythemia vera. Blood. 1968;32(3):488–91.

    CAS  PubMed  Google Scholar 

  52. Pearson TC, Weatherly-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet. 1978;2:1219–21.

    Article  CAS  PubMed  Google Scholar 

  53. Marchioli R, Vannucchi AM, Barbui T. Treatment target in polycythemia vera. N Engl J Med. 2013;368(16):1556.

    PubMed  Google Scholar 

  54. Rector WG, Fortuin NJ, Conley CL. Non-hematologic effects of chronic iron deficiency. A study of patients with polycythemia vera treated solely with venesections. Medicine (Baltimore). 1982;61(6):382–9.

    Article  Google Scholar 

  55. Michiels JJ, Berneman Z, Schroyens W, et al. Platelet-mediated erythromelalgic, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia. Platelets. 2006;17(8):528–44.

    Article  CAS  PubMed  Google Scholar 

  56. Budde U, Scharf RE, Franke P, Hartmann-Budde K, Dent J, Ruggeri ZM. Elevated platelet count as a cause of abnormal von Willebrand factor multimer distribution in plasma. Blood. 1993;82(6):1749–57.

    CAS  PubMed  Google Scholar 

  57. Bartholomew JR, Salgia R, Bell WR. Control of bleeding in patients with immune and nonimmune thrombocytopenia with aminocaproic acid. Arch Intern Med. 1989;149(9):1959–61.

    Article  CAS  PubMed  Google Scholar 

  58. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.

    Article  CAS  PubMed  Google Scholar 

  59. Spivak J. Daily aspirin—only half the answer. N Engl J Med. 2004;350(2):99–101.

    Article  CAS  PubMed  Google Scholar 

  60. Patrono C, Rocca B, De SV. Platelet activation and inhibition in polycythemia vera and essential thrombocythemia. Blood. 2013;121(10):1701–11.

    Article  CAS  PubMed  Google Scholar 

  61. Passamonti F, Rumi E, Pietra D, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.

    Article  CAS  PubMed  Google Scholar 

  62. Tefferi A, Gangat N, Wolanskyj AP. Management of extreme thrombocytosis in otherwise low-risk essential thrombocythemia; does number matter? Blood. 2006;108(7):2493–4.

    Article  CAS  PubMed  Google Scholar 

  63. Torgano G, Mandelli C, Massaro P, et al. Gastroduodenal lesions in polycythaemia vera: frequency and role of Helicobacter pylori. Br J Haematol. 2002;117(1):198–202.

    Article  PubMed  Google Scholar 

  64. Popat U, Frost A, Liu E, et al. High levels of circulating CD34 cells, dacrocytes, clonal hematopoiesis, and JAK2 mutation differentiate myelofibrosis with myeloid metaplasia from secondary myelofibrosis associated with pulmonary hypertension. Blood. 2006;107(9):3486–8.

    Article  CAS  PubMed  Google Scholar 

  65. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2015 update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(2):162–73.

    Article  CAS  PubMed  Google Scholar 

  66. Passamonti F, Malabarba L, Orlani E, et al. Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia. Haematologica. 2003;88(1):13–8.

    PubMed  Google Scholar 

  67. Stein BL, Saraf S, Sobol U et al. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymphoma. 2013;54(9):1989–95

  68. Berk PD, Goldberg JD, Silverstein MN, et al. Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil therapy. N Engl J Med. 1981;304(8):441–7.

    Article  CAS  PubMed  Google Scholar 

  69. Najean Y, Rain J. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood. 1997;90(9):3370–7.

    CAS  PubMed  Google Scholar 

  70. Spivak JL. An inconvenient truth. Blood. 2010;115(14):2727–8.

    Article  CAS  PubMed  Google Scholar 

  71. Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW. Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci U S A. 2011;108(42):17,360–5.

    Article  Google Scholar 

  72. Spivak JL, Hasselbalch H. Hydroxycarbamide: a user’s guide for chronic myeloproliferative disorders. Expert Rev Anticancer Ther. 2011;11(3):403–14.

    Article  CAS  PubMed  Google Scholar 

  73. Beer PA, Delhommeau F, Lecouedic JP, et al. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    Article  CAS  PubMed  Google Scholar 

  74. Passamonti F, Griesshammer M, Palandri F, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  75. Mesa R, Vannucchi AM, Yacoub A, et al. The efficacy and safety of continued hydroxycarbamide therapy versus switching to ruxolitinib in patients with polycythaemia vera: a randomized, double-blind, double-dummy, symptom study (RELIEF). Br J Haematol. 2017;176(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  76. Vannucchi AM, Verstovsek S, Guglielmelli P, et al. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. Ann Hematol. 2017;96(7):1113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematological and molecular responses with low toxicity in polycythemia vera. Blood. 2008;108(2037):2040.

    Google Scholar 

  78. Silver RT, Kiladjian JJ, Hasselbalch HC. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol. 2013;6(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  79. •• Gowin K, Jain T, Kosiorek H, et al. Pegylated interferon alpha-2a is clinically effective and tolerable in myeloproliferative neoplasm patients treated off clinical trial. Leuk Res. 2017;54:73–7. Pegylated interferon is an effective therapy in PV, which in contrast to ruxolitinib and hydroxyurea, specifically attacks the malignant stem cells.

    Article  CAS  PubMed  Google Scholar 

  80. Mullally A, Bruedigam C, Poveromo L, et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-alpha in a murine model of polycythemia vera. Blood. 2013;121(18):3692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mesa RA, Steensma DP, Pardanani A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood. 2003;101(7):2534–41.

    Article  CAS  PubMed  Google Scholar 

  82. Spivak JL. Lenalidomide and the 3 Ms.: déjà vu all over again? Blood. 2006;108:1118–9.

    Article  CAS  Google Scholar 

  83. Kroger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an ebmt/eln international working group. Leukemia. 2015;29(11):2126–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L. Spivak MD.

Ethics declarations

Conflict of interest

Jerry L. Spivak has received compensation from Incyte for service as a consultant.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, J.L. Polycythemia Vera. Curr. Treat. Options in Oncol. 19, 12 (2018). https://doi.org/10.1007/s11864-018-0529-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0529-x

Keywords

Navigation