Skip to main content

Clinical Impact of the 2016 Update to the WHO Lymphoma Classification

An Erratum to this article was published on 31 August 2017

This article has been updated

Opinion statement

The 2016 revision of the WHO classification of lymphoid neoplasms includes new entities along with a clearer definition of provisional and definitive subtypes based on better understanding of the molecular drivers of lymphomas. These changes impact current treatment paradigms and provide a framework for future clinical trials. Additionally, this update recognizes several premalignant or predominantly indolent entities and underscores the importance of avoiding unnecessarily aggressive treatment in the latter subsets.

This is a preview of subscription content, access via your institution.

Change history

  • 31 August 2017

    An erratum to this article has been published.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90. This is the original manuscript highlighting the molecular and pathological changes in the 2016 WHO revision

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Zelenetz AD, Gordon LI, Wierda WG, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Non-Hodgkin’s Lymphoma Version 3.2016. 2016.

  3. 3.

    Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009;360:659–67.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Vardi A, Dagklis A, Scarfò L, et al. Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood. 2013;121:4521–8.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Gibson SE, Swerdlow SH, Ferry JA, et al. Reassessment of small lymphocytic lymphoma in the era of monoclonal B-cell lymphocytosis. Haematologica. 2011;96:1144–52.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Giné E, Martinez A, Villamor N, et al. Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia (“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior. Haematologica. 2010;95:1526–33.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Ciccone M, Agostinelli C, Rigolin GM, et al. Proliferation centers in chronic lymphocytic leukemia: correlation with cytogenetic and clinicobiological features in consecutive patients analyzed on tissue microarrays. Leukemia. 2012;26:499–508.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Falchi L, Keating MJ, Marom EM, et al. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood. 2014;123:2783–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Gradowski JF, Sargent RL, Craig FE, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma with cyclin D1 positive proliferation centers do not have CCND1 translocations or gains and lack SOX11 expression. Am J Clin Pathol. 2012;138:132–9.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Gibson SE, Leeman-Neill RJ, Jain S, et al. Proliferation centres of chronic lymphocytic leukaemia/small lymphocytic lymphoma have enhanced expression of MYC protein, which does not result from rearrangement or gain of the MYC gene. Br J Haematol. 2016;175:173–5.

  13. 13.

    Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121:1403–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16:169–76.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17:768–78.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Swerdlow SH, Campo E, Harris NL, et al: WHO classification of tumours of haematopoietic and lymphoid tissues, fourth edition, World Health Organization, 2008.

  20. 20.

    Swerdlow SH, Kuzu I, Dogan A, et al. The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch. 2016;468:259–75.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    King RL, Gonsalves WI, Ansell SM, et al. Lymphoplasmacytic lymphoma with a non-IgM paraprotein shows clinical and pathologic heterogeneity and may harbor MYD88 L265P mutations. Am J Clin Pathol. 2016;145:843–51.

    PubMed  Article  Google Scholar 

  23. 23.

    Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121:2051–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Peveling-Oberhag J, Wolters F, Döring C, et al. Whole exome sequencing of microdissected splenic marginal zone lymphoma: a study to discover novel tumor-specific mutations. BMC Cancer. 2015;15:773.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Cani AK, Soliman M, Hovelson DH, et al. Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: new routes to targeted therapies. Mod Pathol. 2016;29:685–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Nakamura T, Tateishi K, Niwa T, et al. Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol Appl Neurobiol. 2016;42:279–90.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Oishi N, Kondo T, Nakazawa T, et al. High prevalence of the MYD88 mutation in testicular lymphoma: immunohistochemical and genetic analyses. Pathol Int. 2015;65:528–35.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Pham-Ledard A, Prochazkova-Carlotti M, Andrique L, et al. Multiple genetic alterations in primary cutaneous large B-cell lymphoma, leg type support a common lymphomagenesis with activated B-cell-like diffuse large B-cell lymphoma. Mod Pathol. 2014;27:402–11.

    CAS  PubMed  Google Scholar 

  30. 30.

    Pham-Ledard A, Beylot-Barry M, Barbe C, et al. High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B-cell lymphoma, leg-type. JAMA Dermatol. 2014;150:1173–9.

    PubMed  Article  Google Scholar 

  31. 31.

    Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122:1222–32.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Schmidt J, Federmann B, Schindler N, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol. 2015;169:795–803.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia. 2015;29:169–76.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Cao Y, Hunter ZR, Liu X, et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P)-directed survival signalling in Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;168:701–7.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    •• Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372:1430–40. This paper is the study that led to the approval of ibrutinib for WM. It is a good example of the therapeutic implications of somatic mutations in lymphoma. It identifies two separate mutations and demonstrates that response to ibrutinib is dependent on mutation status

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Horn H, Schmelter C, Leich E, et al. Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immunohistochemical profiles. Haematologica. 2011;96:1327–34.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16:1111–22.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Tellier J, Menard C, Roulland S, et al. Human t(14;18)positive germinal center B cells: a new step in follicular lymphoma pathogenesis? Blood. 2014;123:3462–5.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Roulland S, Kelly RS, Morgado E, et al. t(14;18) Translocation: a predictive blood biomarker for follicular lymphoma. J Clin Oncol. 2014;32:1347–55.

    PubMed  Article  Google Scholar 

  42. 42.

    Pillai RK, Surti U, Swerdlow SH. Follicular lymphoma-like B cells of uncertain significance (in situ follicular lymphoma) may infrequently progress, but precedes follicular lymphoma, is associated with other overt lymphomas and mimics follicular lymphoma in flow cytometric studies. Haematologica. 2013;98:1571–80.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Jegalian AG, Eberle FC, Pack SD, et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood. 2011;118:2976–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Green MR, Kihira S, Liu CL, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112:E1116–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Green MR, Gentles AJ, Nair RV, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121:1604–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122:3165–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46:176–81.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113:1053–61.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Mori M, Kobayashi Y, Maeshima AM, et al. The indolent course and high incidence of t(14;18) in primary duodenal follicular lymphoma. Ann Oncol. 2010;21:1500–5.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Schmatz AI, Streubel B, Kretschmer-Chott E, et al. Primary follicular lymphoma of the duodenum is a distinct mucosal/submucosal variant of follicular lymphoma: a retrospective study of 63 cases. J Clin Oncol. 2011;29:1445–51.

    PubMed  Article  Google Scholar 

  51. 51.

    Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37:333–43.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Louissaint A, Ackerman AM, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120:2395–404.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Orchard J, Garand R, Davis Z, et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101:4975–81.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Royo C, Navarro A, Clot G, et al. Non-nodal type of mantle cell lymphoma is a specific biological and clinical subgroup of the disease. Leukemia. 2012;26:1895–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Ondrejka SL, Lai R, Smith SD, et al. Indolent mantle cell leukemia: a clinicopathological variant characterized by isolated lymphocytosis, interstitial bone marrow involvement, kappa light chain restriction, and good prognosis. Haematologica. 2011;96:1121–7.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Carvajal-Cuenca A, Sua LF, Silva NM, et al. In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica. 2012;97:270–8.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012;122:3416–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72:5307–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Determann O, Hoster E, Ott G, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood. 2008;111:2385–7.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Fernandez V, Salamero O, Espinet B, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70:1408–18.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Del Giudice I, Messina M, Chiaretti S, et al. Behind the scenes of non-nodal MCL: downmodulation of genes involved in actin cytoskeleton organization, cell projection, cell adhesion, tumour invasion, TP53 pathway and mutated status of immunoglobulin heavy chain genes. Br J Haematol. 2012;156:601–11.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Rule SA, Poplar S, Evans PA, et al. Indolent mantle-cell lymphoma: immunoglobulin variable region heavy chain sequence analysis reveals evidence of disease 10 years prior to symptomatic clinical presentation. J Clin Oncol. 2011;29:e437–9.

    PubMed  Article  Google Scholar 

  64. 64.

    Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110:18250–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Kridel R, Meissner B, Rogic S, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119:1963–71.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Salaverria I, Royo C, Carvajal-Cuenca A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121:1394–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Dunleavy K, Fanale M, LaCasce A, et al. Preliminary report of a multicenter prospective phase II study of DA-EPOCH-R in MYC-rearranged aggressive B-cell lymphoma. Blood. 2014;124:395.

    Google Scholar 

  68. 68.

    Sun H, Savage KJ, Karsan A, et al. Outcome of patients with non-Hodgkin lymphomas with concurrent MYC and BCL2 rearrangements treated with CODOX-M/IVAC with rituximab followed by hematopoietic stem cell transplantation. Clin Lymphoma Myeloma Leuk. 2015;15:341–8.

    PubMed  Article  Google Scholar 

  69. 69.

    Savage KJ, Slack GW, Mottok A, et al. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL. Blood. 2016;127:2182–8.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Li S, Lin P, Fayad LE, et al. B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod Pathol. 2012;25:145–56.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Scott DW, Mottok A, Ennishi D, et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol. 2015;33:2848–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Scott DW, Wright GW, Williams PM, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123:1214–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6:130–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Iqbal J, Greiner TC, Patel K, et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia. 2007;21:2332–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Ye BH, Lista F, Lo Coco F, et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science. 1993;262:747–50.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43:830–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Monti S, Chapuy B, Takeyama K, et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell. 2012;22:359–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A. 2008;105:13520–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Muppidi JR, Schmitz R, Green JA, et al. Loss of signalling via Galpha13 in germinal centre B-cell-derived lymphoma. Nature. 2014;516:254–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459:712–6.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11:12–23.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Intlekofer AM, Younes A. Precision therapy for lymphoma—current state and future directions. Nat Rev Clin Oncol. 2014;11:585–96.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    PubMed  Article  Google Scholar 

  90. 90.

    Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2003;100:9991–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Nowakowski GS, LaPlant B, Macon WR, et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study. J Clin Oncol. 2015;33:251–7.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Vitolo U, Chiappella A, Franceschetti S, et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 2014;15:730–7.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Molina TJ, Canioni D, Copie-Bergman C, et al. Young patients with non-germinal center B-cell-like diffuse large B-cell lymphoma benefit from intensified chemotherapy with ACVBP plus rituximab compared with CHOP plus rituximab: analysis of data from the Groupe d’Etudes des Lymphomes de l’Adulte/lymphoma study association phase III trial LNH 03-2B. J Clin Oncol. 2014;32:3996–4003.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Younes A, Thieblemont C, Morschhauser F, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15:1019–26.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Offner F, Samoilova O, Osmanov E, et al. Frontline rituximab, cyclophosphamide, doxorubicin, and prednisone with bortezomib (VR-CAP) or vincristine (R-CHOP) for non-GCB DLBCL. Blood. 2015;126:1893–901.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Ruan J, Martin P, Furman RR, et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29:690–7.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Dunleavy K, Pittaluga S, Czuczman MS, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113:6069–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell–like than in germinal center B-cell–like phenotype. Cancer. 2011;117:5058–66.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21:922–6.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Leonard JP, Kolibaba K, Reeves Ja, et al: Randomized phase 2 open-label study of R-CHOP ± bortezomib in patients (Pts) with untreated non-germinal center B-cell-like (non-GCB) subtype diffuse large cell lymphoma (DLBCL): results from the pyramid trial (NCT00931918) Blood 126, 2015.

  101. 101.

    Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114:3533–7.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Barrans S, Crouch S, Smith A, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28:3360–5.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Horn H, Ziepert M, Becher C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121:2253–63.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Sesques P, Johnson NA. Approach to the diagnosis and treatment of high-grade B cell lymphomas with <em>MYC</em> and <em>BCL2</em> and/or <em>BCL6</em> rearrangements. Blood, 2016.

  105. 105.

    Swerdlow SH. Diagnosis of ‘double hit’ diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. Hematology Am Soc Hematol Educ Program. 2014;2014:90–9.

    PubMed  Google Scholar 

  106. 106.

    Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30:3452–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Salaverria I, Martin-Guerrero I, Wagener R, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123:1187–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Ferreiro JF, Morscio J, Dierickx D, et al. Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern. Haematologica. 2015;100:e275–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Campo E. MYC in DLBCL: partners matter. Blood. 2015;126:2439–40.

    PubMed  Article  Google Scholar 

  110. 110.

    Momose S, Weißbach S, Pischimarov J, et al. The diagnostic gray zone between Burkitt lymphoma and diffuse large B-cell lymphoma is also a gray zone of the mutational spectrum. Leukemia. 2015;29:1789–91.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44:1321–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Richter J, Schlesner M, Hoffmann S, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44:1316–20.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Sander S, Calado DP, Srinivasan L, et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell. 2012;22:167–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Howlett C, Snedecor SJ, Landsburg DJ, et al. Front-line, dose-escalated immunochemotherapy is associated with a significant progression-free survival advantage in patients with double-hit lymphomas: a systematic review and meta-analysis. Br J Haematol. 2015;170:504–14.

    PubMed  Article  Google Scholar 

  116. 116.

    Petrich AM, Gandhi M, Jovanovic B, et al. Impact of induction regimen and stem cell transplantation on outcomes in double-hit lymphoma: a multicenter retrospective analysis. Blood. 2014;124:2354–61.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Dojcinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117:4726–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126:863–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Dojcinov SD, Venkataraman G, Raffeld M, et al. EBV positive mucocutaneous ulcer—a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34:405–17.

    PubMed  Article  Google Scholar 

  120. 120.

    Hart M, Thakral B, Yohe S, et al. EBV-positive mucocutaneous ulcer in organ transplant recipients: a localized indolent posttransplant lymphoproliferative disorder. Am J Surg Pathol. 2014;38:1522–9.

    PubMed  Article  Google Scholar 

  121. 121.

    Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118:139–47.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Karube K, Guo Y, Suzumiya J, et al. CD10-MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109:3076–9.

    CAS  PubMed  Google Scholar 

  123. 123.

    Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115:1026–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123:1293–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120:1466–9.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119:1901–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Nicolae A, Pittaluga S, Venkataraman G, et al. Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol. 2013;37:816–26.

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Moroch J, Copie-Bergman C, de Leval L, et al. Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics. Am J Surg Pathol. 2012;36:1636–46.

    PubMed  Article  Google Scholar 

  130. 130.

    Balagué O, Martínez A, Colomo L, et al. Epstein-Barr virus negative clonal plasma cell proliferations and lymphomas in peripheral T-cell lymphomas: a phenomenon with distinctive clinicopathologic features. Am J Surg Pathol. 2007;31:1310–22.

    PubMed  Article  Google Scholar 

  131. 131.

    Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123:2915–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123:3007–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Marquard L, Poulsen CB, Gjerdrum LM, et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology. 2009;54:688–98.

    PubMed  Article  Google Scholar 

  135. 135.

    Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward—report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64:171–99.

    PubMed  Article  Google Scholar 

  136. 136.

    Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111:5496–504.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93:3913–21.

    CAS  PubMed  Google Scholar 

  138. 138.

    Sibon D, Fournier M, Brière J, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30:3939–46.

    PubMed  Article  Google Scholar 

  139. 139.

    • Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124:1473–80. This study highlights the heterogeneity of ALK− ALCL, with rearragements in DUSP22 highlighting a group with improved prognosis, and rearrangements in TP63 highlighting a group with worse prognosis

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120:1274–81.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol. 2013;31:3019–25.

    PubMed  Article  Google Scholar 

  142. 142.

    Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Thompson PA, Lade S, Webster H, et al. Effusion-associated anaplastic large cell lymphoma of the breast: time for it to be defined as a distinct clinico-pathological entity. Haematologica. 2010;95:1977–9.

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Keech JA, Creech BJ. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast Reconstr Surg. 1997;100:554–5.

    PubMed  Article  Google Scholar 

  145. 145.

    Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32:114–20.

    PubMed  Article  Google Scholar 

  146. 146.

    Clemens MW, Medeiros LJ, Butler CE, et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2016;34:160–8.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Laurent C, Delas A, Gaulard P, et al. Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol. 2016;27:306–14.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Perry AM, Warnke RA, Hu Q, et al. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood. 2013;122:3599–606.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Petrella T, Maubec E, Cornillet-Lefebvre P, et al. Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma? Am J Surg Pathol. 2007;31:1887–92.

    PubMed  Article  Google Scholar 

  150. 150.

    Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology. 2007;132:1902–11.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjana H. Advani MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Although no new studies with human or animal subjects were performed by the authors for this article, this article does contain two cited studies (references 37 and 99) where Dr. Advani was a coinvestigator.

Additional information

The original version of this article was revised: The heading of the second column of Table 2 was incorrect. Instead of “What’s New”, the heading captured was “Clinical Entity”, which also is the heading of the first column.

This article is part of the Topical Collection on Lymphoma

An erratum to this article is available at https://doi.org/10.1007/s11864-017-0499-4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lynch, R.C., Gratzinger, D. & Advani, R.H. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr. Treat. Options in Oncol. 18, 45 (2017). https://doi.org/10.1007/s11864-017-0483-z

Download citation

Keywords

  • Non-Hodgkin lymphoma
  • Chronic lymphocytic leukemia (CLL)
  • Lymphoplasmacytic lymphoma
  • Waldenström macroglobulinemia
  • Follicular lymphoma
  • Mantle cell lymphoma
  • Diffuse large B cell lymphoma (DLBCL)
  • BCL6 translocations
  • Double hit lymphoma
  • Burkitt lymphoma
  • High grade B cell lymphoma NOS
  • ALK-negative anaplastic large cell lymphoma (ALCL)