Skip to main content

Advertisement

Log in

Advancing Immunotherapy in Metastatic Breast Cancer

  • Breast Cancer (ML Telli, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Despite many advances in the treatment of breast cancer, the development of metastatic disease remains an incurable and frequent cause of cancer death for women worldwide. An improved understanding of the role of host immunosurveillance in modulating breast cancer disease biology, as well as impressive survival benefits seen to checkpoint blockade in other malignancies have provided great hope for an expanding role of immunotherapies in breast cancer management. While these novel therapies are currently being investigated in clinical trials, signals of efficacy, and tolerability in early phase studies suggest these will eventually make their way into standard practice algorithms. Ongoing research has highlighted a high degree of intertumoural heterogeneity in tumour lymphocytic infiltrates, suggesting some tumours or subtypes are more immunogenic than others. Furthermore, tumour intrinsic mechanisms of immune evasion are beginning to be uncovered, potentially representing key therapeutic targets to use in combination with checkpoint blockade, exemplifying the emerging concept of personalised medicine approaches to immune therapies. Subsequently, different immunotherapeutic strategies may be required based on stratification by these factors—for the minority of tumours with a high level of pre-existing immunity, immune checkpoint blockade monotherapy may be sufficient. However, for the majority of tumours with lower levels of pre-existing immunity, combination approaches will likely be required to achieve maximal therapeutic effect. Results of ongoing clinical trials including combinations with chemotherapy, radiation therapy, and targeted therapies are eagerly awaited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomark Prev. 2016;25:16–27.

    Article  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  3. Zeichner SB, Herna S, Mani A, et al. Survival of patients with de-novo metastatic breast cancer: analysis of data from a large breast cancer-specific private practice, a university-based cancer center and review of the literature. Breast Cancer Res Treat. 2015;153:617–24.

    Article  CAS  PubMed  Google Scholar 

  4. Cardoso F, Senkus E. Breast cancer in 2014: a call back to reality! Nat Rev Clin Oncol. 2015;12:67–8.

    Article  PubMed  Google Scholar 

  5. Cardoso F. Highlights in breast cancer from ASCO 2016. ESMO Open. 2016;1:e000106.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang YC, Morrison G, Gillihan R, et al. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers—role of estrogen receptor and HER2 reactivation. Breast Cancer Res. 2011;13:R121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chia SK, Speers CH, D'Yachkova Y, et al. The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. Cancer. 2007;110:973–9.

    Article  PubMed  Google Scholar 

  8. Fossati R, Confalonieri C, Torri V, et al. Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J Clin Oncol. 1998;16:3439–60.

    Article  CAS  PubMed  Google Scholar 

  9. Dear RF, McGeechan K, Jenkins MC, et al: Combination versus sequential single agent chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev:Cd008792, 2013

  10. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    Article  CAS  PubMed  Google Scholar 

  11. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aaltomaa S, Lipponen P, Eskelinen M, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28a:859–64.

    Article  CAS  PubMed  Google Scholar 

  13. Loi S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology. 2013;2:e24720.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  16. Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wick DA, Webb JR, Nielsen JS, et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin Cancer Res. 2014;20:1125–34.

    Article  CAS  PubMed  Google Scholar 

  18. Robbins PF, Lu YC, El-Gamil M, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dadmarz R, Sgagias MK, Rosenberg SA, et al. CD4+ T lymphocytes infiltrating human breast cancer recognise autologous tumor in an MHC-class-II restricted fashion. Cancer Immunol Immunother. 1995;40:1–9.

    CAS  PubMed  Google Scholar 

  20. Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13:228–41.

    Article  CAS  PubMed  Google Scholar 

  21. Dushyanthen S, Beavis PA, Savas P, et al. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med. 2015;13:202.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ruffell B, Au A, Rugo HS, et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796–801.

    Article  CAS  PubMed  Google Scholar 

  23. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.

    Article  CAS  PubMed  Google Scholar 

  24. Denkert C, Wienert S, Poterie A, et al: Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod Pathol, 2016

  25. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7.

    Article  CAS  PubMed  Google Scholar 

  26. Stanton SE, Adams S, Disis ML: Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol, 2016

  27. Denkert C, Von Minckwitz G, Darb-Esfahani S, et al: Evaluation of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarker in different subtypes of breast cancer treated with neoadjuvant therapy—a metaanalysis of 3771 patients. Abstracts: Thirty-Ninth Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 6–10, 2016; San Antonio, TX, 2016

  28. Loi S, Drubay D, Adams S, et al. Abstract S1-03: Pooled individual patient data analysis of stromal tumor infiltrating lymphocytes in primary triple negative breast cancer treated with anthracycline-based chemotherapy. Cancer Res. 2016;76:S1-03-S1-03.

    Google Scholar 

  29. Salgado R, Denkert C, Campbell C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO Trial. JAMA Oncol. 2015;1:448–54.

    Article  PubMed  Google Scholar 

  30. Perez EA, Ballman KV, Tenner KS, et al. Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 Adjuvant Trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol. 2016;2:56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ingold Heppner B, Untch M, Denkert C, et al: Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant treated HER2-positive breast cancer. Clin Cancer Res, 2016

    Google Scholar 

  32. •• Loi S, Michiels S, Salgado R, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25:1544–50. A large clinical study reporting the prognostic value of tumour-infiltarting lymphocytes (TILs) in triple-negative bresat cancer patients and showing that TILs could predict which HER2+ breast cancers derive benefit from trastuzumab.

    Article  CAS  PubMed  Google Scholar 

  33. Kim S-R, Gavin PG, Pogue-Geile KL, et al. Abstract 2837: a surrogate gene expression signature of tumor infiltrating lymphocytes (TILs) predicts degree of benefit from trastuzumab added to standard adjuvant chemotherapy in NSABP (NRG) trial B-31 for HER2+ breast cancer. Cancer Res. 2015;75:–2837.

  34. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  36. Borghaei H, Paz-Ares L, Horn L, et al. nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  Google Scholar 

  37. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.

    Article  CAS  PubMed  Google Scholar 

  39. Arnedos M, Filleron T, Dieci MV, et al. Genomic and immune characterization of metastatic breast cancer (MBC): and ancillary studies of the SAFIR01 & MOSCATO trials. Ann Oncol. 2014;25:iv116. (abstr 3510)

    Article  Google Scholar 

  40. Solinas C, Boisson A, Brown D, et al. Abstract 1587P: Tumor infiltrating lymphocytes and tertiary lymphoid structures in paired primary tumors and metastases from breast cancer patients. Ann Oncol. 2016;27:546–7.

    Article  Google Scholar 

  41. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.

    Article  CAS  PubMed  Google Scholar 

  42. Issa-Nummer Y, Darb-Esfahani S, Loibl S, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer—a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8:e79775.

    Article  PubMed  PubMed Central  Google Scholar 

  43. West NR, Milne K, Truong PT, et al. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pruneri G, Gray KP, Vingiani A, et al. Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22-00. Breast Cancer Res Treat. 2016;158:323–31.

    Article  CAS  PubMed  Google Scholar 

  45. Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ali HR, Provenzano E, Dawson SJ, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25:1536–43.

    Article  CAS  PubMed  Google Scholar 

  47. Dieci MV, Criscitiello C, Goubar A, et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol. 2014;25:611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dieci MV, Mathieu MC, Guarneri V, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 2015;26:1698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Luen SJ, Salgado R, Fox S, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18:52–62. A clinical study reporting the positive prognostic associations between high TILs and survival in advanced HER2-positive breast cancer patients regardless their treatement type.

    Article  CAS  PubMed  Google Scholar 

  50. Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther. 2012;12:1597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stagg J, Allard B. Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Therapeutic Advances in Medical Oncology. 2013;5:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolchok JD, Hodi FS, Weber JS, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vonderheide RH, LoRusso PM, Khalil M, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010;16:3485–94.

    Article  CAS  PubMed  Google Scholar 

  55. McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res. 2016;22:5729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  59. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  60. Dirix LY, Takacs I, Nikolinakos P, et al: Abstract S1-04: Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN solid tumor trial. Cancer Research 76:S1–04-S1–04, 2016

  61. Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.

    Article  CAS  PubMed  Google Scholar 

  62. Emens LA, Braiteh FS, Cassier P, et al: Abstract 2859-Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC) 2015 Annual meeting AACR, 2015

  63. Rugo HS, Delord JP, Im SA, et al. Abstract S5-07: Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1-positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res. 2016;76:S5-07-S5-07.

    Google Scholar 

  64. McDermott D, Lebbe C, Hodi FS, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev. 2014;40:1056–64.

    Article  PubMed  Google Scholar 

  65. Ilie M, Hofman V, Dietel M, et al. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 2016;468:511–25.

    Article  CAS  PubMed  Google Scholar 

  66. Gaule P, Smithy JW, Toki M, et al: A quantitative comparison of antibodies to programmed cell death 1 ligand 1. JAMA Oncol, 2016

  67. •• Reck M, Rodriguez-Abreu D, Robinson AG, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med, 2016. Randomised study using PDL-1 positive non-small-cell lung cancer patients reported outcomes showing longer survival and progression free with pembrolizumab versus chemotherapy.

  68. Socinski M, Creelan B, Horn L, et al: Abstract LBA7_PR: CheckMate 026: a phase 3 trial of nivolumab vs investigator’s choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage IV/recurrent programmed death ligand 1 (PD-L1)-positive NSCLC. Ann Oncol, 2016

  69. Tumeh PC, Rosenblum M, Handley N, et al. Abstract 3857: Metastatic site and response to pembrolizumab (anti-PD1 antibody) in melanoma. Cancer Res. 2015;75:–2857.

  70. Demaria S, Volm MD, Shapiro RL, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res. 2001;7:3025–30.

    CAS  PubMed  Google Scholar 

  71. Dieci MV, Criscitiello C, Goubar A, et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol. 2015;26:1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sistigu A, Yamazaki T, Vacchelli E, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9.

    Article  CAS  PubMed  Google Scholar 

  73. Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res. 2010;173:418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8:151–60.

    Article  CAS  PubMed  Google Scholar 

  75. Golden EB, Pellicciotta I, Demaria S, et al. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2012;2:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31:1062–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Michaud M, Sukkurwala AQ, Martins I, et al. Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncoimmunology. 2012;1:393–5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A. 2013;110:11091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13

  80. Apetoh L, Ghiringhelli F, Tesniere A, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev. 2007;220:47–59.

    Article  CAS  PubMed  Google Scholar 

  81. Arnold T, Michlmayr A, Baumann S, et al. Plasma HMGB-1 after the initial dose of epirubicin/docetaxel in cancer. Eur J Clin Investig. 2013;43:286–91.

    Article  CAS  Google Scholar 

  82. Yamazaki T, Hannani D, Poirier-Colame V, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 2014;21:69–78.

    Article  CAS  PubMed  Google Scholar 

  83. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.

    Article  CAS  PubMed  Google Scholar 

  84. Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer. 2011;12:58–67.

    PubMed  Google Scholar 

  85. Baccelli I, Schneeweiss A, Riethdorf S, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.

    Article  CAS  PubMed  Google Scholar 

  86. Baccelli I, Stenzinger A, Vogel V, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget. 2014;5:8147–60.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stagg J, Divisekera U, McLaughlin N, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A. 2010;107:1547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu J, Wang L, Zhao F, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One. 2015;10:e0137345.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kristensen TB, Knutsson MLT, Wehland M, et al. Anti-vascular endothelial growth factor therapy in breast cancer. Int J Mol Sci. 2014;15:23024–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muenst S, Soysal SD, Gao F, et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139:667–76.

    Article  CAS  PubMed  Google Scholar 

  92. Junttila TT, Li J, Johnston J, et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 2014;74:5561–71.

    Article  CAS  PubMed  Google Scholar 

  93. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  PubMed  Google Scholar 

  94. Sledge GW. Anti–vascular endothelial growth factor therapy in breast cancer: game over? J Clin Oncol. 2015;33:133–5.

    Article  CAS  PubMed  Google Scholar 

  95. Miles DW, Dieras V, Cortes J, et al. First-line bevacizumab in combination with chemotherapy for HER2-negative metastatic breast cancer: pooled and subgroup analyses of data from 2447 patients. Ann Oncol. 2013;24:2773–80.

    Article  CAS  PubMed  Google Scholar 

  96. Roland CL, Dineen SP, Lynn KD, et al. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther. 2009;8:1761–71.

    Article  CAS  PubMed  Google Scholar 

  97. Jin Y, Chauhan SK, El Annan J, et al. A novel function for programmed death ligand-1 regulation of angiogenesis. Am J Pathol. 2011;178:1922–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Joseph RW, Parasramka M, Eckel-Passow JE, et al. Inverse association between programmed death ligand 1 and genes in the VEGF pathway in primary clear cell renal cell carcinoma. Cancer Immunol Res. 2013;1:378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xue G, Zippelius A, Wicki A, et al. Integrated Akt/PKB signaling in immunomodulation and its potential role in cancer immunotherapy. J Natl Cancer Inst. 2015;107

  101. Hahnel PS, Thaler S, Antunes E, et al. Targeting AKT signaling sensitizes cancer to cellular immunotherapy. Cancer Res. 2008;68:3899–906.

    Article  PubMed  Google Scholar 

  102. Noh KH, Kang TH, Kim JH, et al. Activation of Akt as a mechanism for tumor immune evasion. Mol Ther. 2009;17:439–47.

    Article  CAS  PubMed  Google Scholar 

  103. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9:324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Powell JD, Pollizzi KN, Heikamp EB, et al. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68.

    Article  CAS  PubMed  Google Scholar 

  105. Armand P, Gannamaneni S, Kim HT, et al. Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol. 2008;26:5767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev. 2010;235:234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pedicord VA, Cross JR, Montalvo-Ortiz W, et al. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness. J Immunol. 2015;194:2089–98.

    Article  CAS  PubMed  Google Scholar 

  108. Brown JS, O'Carrigan B, Jackson SP, et al. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.

    Article  CAS  PubMed  Google Scholar 

  109. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherene Loi MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M., Teo, Z.L., Luen, S.J. et al. Advancing Immunotherapy in Metastatic Breast Cancer. Curr. Treat. Options in Oncol. 18, 35 (2017). https://doi.org/10.1007/s11864-017-0478-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0478-9

Keywords

Navigation