Skip to main content

Advertisement

Log in

Image-Guided Thermal Ablative Therapies in the Treatment of Sarcoma

  • Sarcoma (SH Okuno, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Percutaneous thermal ablation, including microwave ablation (MWA), radiofrequency ablation (RFA), and cryoablation, is a well-established focal treatment option for primary and metastatic malignancies. While published literature specific to ablation of sarcomas is relatively lacking compared with non-sarcomatous malignancies, what is available is promising. In situations where a focal treatment option is desired, strong consideration should be given to percutaneous thermal ablation, in addition to surgery and radiation therapy. A significant advantage of percutaneous thermal ablation over surgery and radiation includes the repeatability of ablation, as there is no absolute limit on the number of times an ablation can be performed. Compared with surgery, ablation offers the potential of decreased recovery time, a less invasive procedure, and is often performed in patients deemed not medically fit for surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Venkatesan AM, Wood BJ, Gervais DA. Percutaneous ablation in the kidney. Radiology. 2011;261(2):375–91. doi:10.1148/radiol.11091207.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chinnaratha MA, Chuang MY, Fraser RJ, Woodman RJ, Wigg AJ. Percutaneous thermal ablation for primary hepatocellular carcinoma: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31(2):294–301. doi:10.1111/jgh.13028.

    Article  PubMed  Google Scholar 

  3. Mahnken AH, Pereira PL, de Baere T. Interventional oncologic approaches to liver metastases. Radiology. 2013;266(2):407–30. doi:10.1148/radiol.12112544.

    Article  PubMed  Google Scholar 

  4. Dupuy DE, Fong Y, McMullen WN. Image-guided cancer therapy : a multidisciplinary approach. New York: Springer; 2013.

    Book  Google Scholar 

  5. • Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology. 2014;68(1):1–11. doi:10.1016/j.cryobiol.2013.11.001. Important review of the biological and physical mechanisms of cryoablative killing of cancer cells.

    Article  CAS  PubMed  Google Scholar 

  6. •• Kurup AN, Schmit GD, Morris JM, Atwell TD, Schmitz JJ, Weisbrod AJ, et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Intervent Radiol. 2016; doi:10.1007/s00270-016-1487-y. State of the art review of potential complications related to ablation of bone and soft tissue tumors. Additionally, discusses adjuvant techniques and ablation zone monitoring tools to improve ablation safety.

    PubMed  Google Scholar 

  7. Schmit GD, Kurup AN, Schmitz JJ, Atwell TD. The “leverage technique”: using needles to displace the stomach during liver ablation. J Vasc Interv Radiol. 2016;27(11):1765–7. doi:10.1016/j.jvir.2016.06.027.

    Article  PubMed  Google Scholar 

  8. Froemming A, Atwell T, Farrell M, Callstrom M, Leibovich B, Charboneau W. Probe retraction during renal tumor cryoablation: a technique to minimize direct ureteral injury. J Vasc Interv Radiol. 2010;21(1):148–51. doi:10.1016/j.jvir.2009.09.014.

    Article  PubMed  Google Scholar 

  9. Bodily KD, Atwell TD, Mandrekar JN, Farrell MA, Callstrom MR, Schmit GD, et al. Hydrodisplacement in the percutaneous cryoablation of 50 renal tumors. AJR Am J Roentgenol. 2010;194(3):779–83. doi:10.2214/AJR.08.1570.

    Article  PubMed  Google Scholar 

  10. Kurup AN, Callstrom MR. Increasing role of image-guided ablation in the treatment of musculoskeletal tumors. Cancer J. 2016;22(6):401–10. doi:10.1097/PPO.0000000000000233.

    Article  CAS  PubMed  Google Scholar 

  11. Rose PS, Morris JM. Cryosurgery/cryoablation in musculoskeletal neoplasms: history and state of the art. Curr Rev Musculoskelet Med. 2015;8(4):353–60. doi:10.1007/s12178-015-9307-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsoumakidou G, Koch G, Caudrelier J, Garnon J, Cazzato RL, Edalat F, et al. Image-guided spinal ablation: a review. Cardiovasc Intervent Radiol. 2016;39(9):1229–38. doi:10.1007/s00270-016-1402-6.

    Article  PubMed  Google Scholar 

  13. Rodrigues DB, Stauffer PR, Vrba D, Hurwitz MD. Focused ultrasound for treatment of bone tumours. Int J Hyperth. 2015;31(3):260–71. doi:10.3109/02656736.2015.1006690.

    Article  Google Scholar 

  14. Gomez FM, Patel PA, Stuart S, Roebuck DJ. Systematic review of ablation techniques for the treatment of malignant or aggressive benign lesions in children. Pediatr Radiol. 2014;44(10):1281–9. doi:10.1007/s00247-014-3001-5.

    Article  PubMed  Google Scholar 

  15. Cornelis F, Havez M, Lippa N, Al-Ammari S, Verdier D, Carteret T, et al. Radiologically guided percutaneous cryotherapy for soft tissue tumours: a promising treatment. Diagn Interv Imaging. 2013;94(4):364–70. doi:10.1016/j.diii.2013.02.001.

    Article  CAS  PubMed  Google Scholar 

  16. • Wallace AN, Robinson CG, Meyer J, Tran ND, Gangi A, Callstrom MR, et al. The metastatic spine disease multidisciplinary working group algorithms. Oncologist. 2015;20(10):1205–15. doi:10.1634/theoncologist.2015-0085. Recent multidisciplinary consensus algorithms for incorporating thermal ablative therapies into the treatment of spinal metastases.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kurup AN, Callstrom MR. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol. 2013;16(4):253–61. doi:10.1053/j.tvir.2013.08.007.

    Article  PubMed  Google Scholar 

  18. •• Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41. doi:10.1002/cncr.27793. First prospective, multicenter trial validating percutaneous cryoablation as a safe, effective and durable treatment option for palliation of painful metastatic bone tumors and improving patient quality of life.

    Article  PubMed  Google Scholar 

  19. Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22(2):300–6. doi:10.1200/JCO.2004.03.097.

    Article  PubMed  Google Scholar 

  20. McMenomy BP, Kurup AN, Johnson GB, Carter RE, McWilliams RR, Markovic SN, et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol. 2013;24(2):207–13. doi:10.1016/j.jvir.2012.10.019.

    Article  PubMed  Google Scholar 

  21. Tomasian A, Wallace A, Northrup B, Hillen TJ, Jennings JW. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. AJNR Am J Neuroradiol. 2016;37(1):189–95. doi:10.3174/ajnr.A4521.

    Article  CAS  PubMed  Google Scholar 

  22. Hegg RM, Kurup AN, Schmit GD, Weisbrod AJ, Atwell TD, Olivier KR, et al. Cryoablation of sternal metastases for pain palliation and local tumor control. J Vasc Interv Radiol. 2014;25(11):1665–70. doi:10.1016/j.jvir.2014.08.011.

    Article  PubMed  Google Scholar 

  23. Kurup AN, Morris JM, Schmit GD, Atwell TD, Schmitz JJ, Rose PS, et al. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol. 2015;26(4):588–94. doi:10.1016/j.jvir.2014.11.023.

    Article  PubMed  Google Scholar 

  24. Kurup AN, Morris JM, Boon AJ, Strommen JA, Schmit GD, Atwell TD, et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J Vasc Interv Radiol. 2014;25(11):1657–64. doi:10.1016/j.jvir.2014.08.006.

    Article  PubMed  Google Scholar 

  25. • Chen W, Zhu H, Zhang L, Li K, Su H, Jin C, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–78. doi:10.1148/radiol.10090374. First large series to demonstrate the feasability and effectiveness of high-intensity focused ultrasound for treatment of primary bone tumors. However, the study highlighted that more aggressive ablations to achieve local control may result in a higher risk of major complications requiring surgical intervention.

    Article  PubMed  Google Scholar 

  26. Yu W, Tang L, Lin F, Yao Y, Shen Z, Zhou X. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma. Surg Oncol. 2015;24(1):9–15. doi:10.1016/j.suronc.2014.10.001.

    Article  PubMed  Google Scholar 

  27. Li C, Zhang W, Fan W, Huang J, Zhang F, Wu P. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer. 2010;116(16):3934–42. doi:10.1002/cncr.25192.

    Article  PubMed  Google Scholar 

  28. • Li J, Guo Z, Yang Q, Ji C, Wang Z. Adjuvant argon-based cryoablation for joint-preserving tumor resection in patients with juxta-articular osteosarcoma around the knee. Cryobiology. 2015;71(2):236–43. doi:10.1016/j.cryobiol.2015.07.005. Study highlights the safety and local control of adjuvant cryoablation at the epiphysis in patients undergoing joint-sparing surgery for juxta-articular osteosarcoma of the knee. The data suggest that adjuvant use of cryoablation may allow salvage of more joints in patients with juxta-articular primary bone tumors.

    Article  PubMed  Google Scholar 

  29. • Li J, Guo Z, Wang Z, Fan H, Fu J. Does microwave ablation of the tumor edge allow for joint-sparing surgery in patients with osteosarcoma of the proximal tibia? Clin Orthop Relat Res. 2015;473(10):3204–11. doi:10.1007/s11999-015-4447-y. Study highlights the safety and local control of adjuvant microwave ablation at the epiphysis in patients undergoing joint-sparing surgery for juxta-articular osteosarcoma of the tibia. The data suggest that adjuvant use of microwave ablation may allow salvage of more joints in patients with juxta-articular primary bone tumors.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kurup AN, Woodrum DA, Morris JM, Atwell TD, Schmit GD, Welch TJ, et al. Cryoablation of recurrent sacrococcygeal tumors. J Vasc Interv Radiol. 2012;23(8):1070–5. doi:10.1016/j.jvir.2012.05.043.

    Article  PubMed  Google Scholar 

  31. Fiore M, MacNeill A, Gronchi A, Colombo C. Desmoid-type fibromatosis: evolving treatment standards. Surg Oncol Clin N Am. 2016;25(4):803–26. doi:10.1016/j.soc.2016.05.010.

    Article  PubMed  Google Scholar 

  32. Wood TJ, Quinn KM, Farrokhyar F, Deheshi B, Corbett T, Ghert MA. Local control of extra-abdominal desmoid tumors: systematic review and meta-analysis. Rare Tumors. 2013;5(1):e2. doi:10.4081/rt.2013.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. •• Schmitz JJ, Schmit GD, Atwell TD, Callstrom MR, Kurup AN, Weisbrod AJ, et al. Percutaneous cryoablation of extraabdominal desmoid tumors: a 10-year experience. AJR Am J Roentgenol. 2016;207(1):190–5. doi:10.2214/AJR.15.14391. Important study demonstrating that percutaneous cryoablation is a safe, effective, and repeatable treatment option for achieving local control of extra-abdominal desmoid tumors.

    Article  PubMed  Google Scholar 

  34. Havez M, Lippa N, Al-Ammari S, Kind M, Stoeckle E, Italiano A, et al. Percutaneous image-guided cryoablation in inoperable extra-abdominal desmoid tumors: a study of tolerability and efficacy. Cardiovasc Intervent Radiol. 2014;37(6):1500–6. doi:10.1007/s00270-013-0830-9.

    Article  CAS  PubMed  Google Scholar 

  35. Reha J, Katz SC. Dermatofibrosarcoma protuberans. Surg Clin North Am. 2016;96(5):1031–46. doi:10.1016/j.suc.2016.05.006.

    Article  PubMed  Google Scholar 

  36. Xu J, Li J, Zhou X, Zeng J, Yao F, Wang Y, et al. Cryotherapy for local recurrent dermatofibrosarcoma protuberans: experience in 19 patients. Cryobiology. 2014;68(1):134–8. doi:10.1016/j.cryobiol.2014.01.009.

    Article  PubMed  Google Scholar 

  37. Fan W-Z, Niu L-Z, Wang Y, Yao X-H, Zhang Y-Q, Tan G-S, et al. Initial experience: alleviation of pain with percutaneous CT-guided cryoablation for recurrent retroperitoneal soft-tissue sarcoma. J Vasc Interv Radiol. 2016;27(12):1798–805. doi:10.1016/j.jvir.2016.06.034.

    Article  PubMed  Google Scholar 

  38. Littrup PJ, Bang HJ, Currier BP, Goodrich DJ, Aoun HD, Heilbrun LK, et al. Soft-tissue cryoablation in diffuse locations: feasibility and intermediate term outcomes. J Vasc Interv Radiol. 2013;24(12):1817–25. doi:10.1016/j.jvir.2013.06.025.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yamakado K, Matsumine A, Nakamura T, Nakatsuka A, Takaki H, Matsubara T, et al. Radiofrequency ablation for the treatment of recurrent bone and soft-tissue sarcomas in non-surgical candidates. Int J Clin Oncol. 2014;19(5):955–62. doi:10.1007/s10147-013-0640-8.

    Article  PubMed  Google Scholar 

  40. Aubry S, Dubut J, Nueffer J-P, Chaigneau L, Vidal C, Kastler B. Prospective 1-year follow-up pilot study of CT-guided microwave ablation in the treatment of bone and soft-tissue malignant tumours. Eur Radiol. 2016; doi:10.1007/s00330-016-4528-7.

    PubMed  Google Scholar 

  41. Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology. 2012;262(3):765–80. doi:10.1148/radiol.11101384.

    Article  PubMed  Google Scholar 

  42. Billingsley KG, Burt ME, Jara E, Ginsberg RJ, Woodruff JM, Leung DH, et al. Pulmonary metastases from soft tissue sarcoma: analysis of patterns of diseases and postmetastasis survival. Ann Surg. 1999;229(5):602–10. discussion 10-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia Franco CE, Torre W, Tamura A, Guillen-Grima F, San-Julian M, Martin-Algarra S, et al. Long-term results after resection for bone sarcoma pulmonary metastases. Eur J Cardiothorac Surg. 2010;37(5):1205–8. doi:10.1016/j.ejcts.2009.11.026.

    Article  PubMed  Google Scholar 

  44. Digesu CS, Wiesel O, Vaporciyan AA, Colson YL. Management of sarcoma metastases to the lung. Surg Oncol Clin N Am. 2016;25(4):721–33. doi:10.1016/j.soc.2016.05.005.

    Article  PubMed  Google Scholar 

  45. Group ESESNW. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii102–12. doi:10.1093/annonc/mdu254.

    Article  Google Scholar 

  46. Treasure T, Fiorentino F, Scarci M, Moller H, Utley M. Pulmonary metastasectomy for sarcoma: a systematic review of reported outcomes in the context of Thames Cancer Registry data. BMJ Open. 2012;2(5) doi:10.1136/bmjopen-2012-001736.

  47. Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanagh PV, Safran H. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol. 2000;174(1):57–9. doi:10.2214/ajr.174.1.1740057.

    Article  CAS  PubMed  Google Scholar 

  48. Xiong L, Dupuy DE. Lung ablation: whats new? J Thorac Imaging. 2016;31(4):228–37. doi:10.1097/RTI.0000000000000212.

    Article  PubMed  Google Scholar 

  49. Egashira Y, Singh S, Bandula S, Illing R. Percutaneous high-energy microwave ablation for the treatment of pulmonary tumors: a retrospective single-center experience. J Vasc Interv Radiol. 2016;27(4):474–9. doi:10.1016/j.jvir.2016.01.001.

    Article  PubMed  Google Scholar 

  50. Sato T, Iguchi T, Hiraki T, Gobara H, Fujiwara H, Sakurai J, et al. Radiofrequency ablation of pulmonary metastases from sarcoma: single-center retrospective evaluation of 46 patients. Jpn J Radiol. 2016; doi:10.1007/s11604-016-0601-z.

    Google Scholar 

  51. • Yevich S, Gaspar N, Tselikas L, Brugieres L, Pacquement H, Schleiermacher G, et al. Percutaneous computed tomography-guided thermal ablation of pulmonary osteosarcoma metastases in children. Ann Surg Oncol. 2016;23(4):1380–6. doi:10.1245/s10434-015-4988-z. Study established the safety and effectivness of percutaneous thermal ablation as a minimally invasive local treatment option with curative potential for pediatric patients with oligometastatic pulmonary osteosarcoma.

    Article  PubMed  Google Scholar 

  52. •• de Baere T, Auperin A, Deschamps F, Chevallier P, Gaubert Y, Boige V, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26(5):987–91. doi:10.1093/annonc/mdv037. Large series of radiofrequency ablation for lung metastases, including 51 patients with sarcoma lung metastases. Study established that overall survival after lung radiofreqeuncy ablation is similar to that for pulmonary metastectomy.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saumet L, Deschamps F, Marec-Berard P, Gaspar N, Corradini N, Petit P, et al. Radiofrequency ablation of metastases from osteosarcoma in patients under 25 years: the SCFE experience. Pediatr Hematol Oncol. 2015;32(1):41–9. doi:10.3109/08880018.2014.926469.

    Article  CAS  PubMed  Google Scholar 

  54. Koelblinger C, Strauss S, Gillams A. Outcome after radiofrequency ablation of sarcoma lung metastases. Cardiovasc Intervent Radiol. 2014;37(1):147–53. doi:10.1007/s00270-013-0644-9.

    Article  PubMed  Google Scholar 

  55. Yashiro H, Nakatsuka S, Inoue M, Kawamura M, Tsukada N, Asakura K, et al. Factors affecting local progression after percutaneous cryoablation of lung tumors. J Vasc Interv Radiol. 2013;24(6):813–21. doi:10.1016/j.jvir.2012.12.026.

    Article  PubMed  Google Scholar 

  56. Palussiere J, Italiano A, Descat E, Ferron S, Cornelis F, Avril A, et al. Sarcoma lung metastases treated with percutaneous radiofrequency ablation: results from 29 patients. Ann Surg Oncol. 2011;18(13):3771–7. doi:10.1245/s10434-011-1806-0.

    Article  CAS  PubMed  Google Scholar 

  57. Nakamura T, Matsumine A, Yamakado K, Matsubara T, Takaki H, Nakatsuka A, et al. Lung radiofrequency ablation in patients with pulmonary metastases from musculoskeletal sarcomas [corrected]. Cancer. 2009;115(16):3774–81. doi:10.1002/cncr.24420.

    Article  PubMed  Google Scholar 

  58. Jaskolka JD, Kachura JR, Hwang DM, Tsao MS, Waddell TK, Asch MR, et al. Pathologic assessment of radiofrequency ablation of pulmonary metastases. J Vasc Interv Radiol. 2010;21(11):1689–96. doi:10.1016/j.jvir.2010.06.023.

    Article  PubMed  Google Scholar 

  59. Gravel G, Yevich S, Tselikas L, Mir O, Teriitehau C, De Baere T, et al. Percutaneous thermal ablation: a new treatment line in the multidisciplinary management of metastatic leiomyosarcoma? Eur J Surg Oncol. 2016; doi:10.1016/j.ejso.2016.06.391.

    PubMed  Google Scholar 

  60. Shady W, Petre EN, Gonen M, Erinjeri JP, Brown KT, Covey AM, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology. 2016;278(2):601–11. doi:10.1148/radiol.2015142489.

    Article  PubMed  Google Scholar 

  61. Mohan H, Nicholson P, Winter DC, O'Shea D, O'Toole D, Geoghegan J, et al. Radiofrequency ablation for neuroendocrine liver metastases: a systematic review. J Vasc Interv Radiol. 2015;26(7):935–42. e1 doi:10.1016/j.jvir.2014.12.009.

    Article  PubMed  Google Scholar 

  62. Kouri BE, Abrams RA, Al-Refaie WB, Azad N, Farrell J, Gaba RC, et al. ACR appropriateness criteria radiologic management of hepatic malignancy. J Am Coll Radiol. 2016;13(3):265–73. doi:10.1016/j.jacr.2015.12.001.

    Article  PubMed  Google Scholar 

  63. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80. doi:10.1056/NEJMoa020461.

    Article  CAS  PubMed  Google Scholar 

  64. •• Hakime A, Le Cesne A, Deschamps F, Farouil G, Boudabous S, Auperin A, et al. A role for adjuvant RFA in managing hepatic metastases from gastrointestinal stromal tumors (GIST) after treatment with targeted systemic therapy using kinase inhibitors. Cardiovasc Intervent Radiol. 2014;37(1):132–9. doi:10.1007/s00270-013-0615-1. Study demonstrated that adjuvant radiofrequency ablation of gastrointestinal stromal tumor liver metastases is effective at achieving local tumor control and should be performed once the patient achieves best morphologic response on tyrosine kinase inhibitor (TKI) therapy and that TKI therapy should be continued post-ablation to prevent disease progression remote from the ablation site.

    Article  PubMed  Google Scholar 

  65. Jones RL, McCall J, Adam A, O'Donnell D, Ashley S, Al-Muderis O, et al. Radiofrequency ablation is a feasible therapeutic option in the multi modality management of sarcoma. Eur J Surg Oncol. 2010;36(5):477–82. doi:10.1016/j.ejso.2009.12.005.

    Article  CAS  PubMed  Google Scholar 

  66. Littrup PJ, Aoun HD, Adam B, Krycia M, Prus M, Shields A. Percutaneous cryoablation of hepatic tumors: long-term experience of a large U.S. series. Abdom Radiol (NY). 2016;41(4):767–80. doi:10.1007/s00261-016-0687-x.

    Article  Google Scholar 

  67. •• Falk AT, Moureau-Zabotto L, Ouali M, Penel N, Italiano A, Bay JO, et al. Effect on survival of local ablative treatment of metastases from sarcomas: a study of the French sarcoma group. Clin Oncol (R Coll Radiol). 2015;27(1):48–55. doi:10.1016/j.clon.2014.09.010. Large, multicenter retrospective review demonstrating that local ablative treatments including surgery, radiation and radiofrequency ablation may be repeated for several oligometastatic events and may improve overall survival in patients with oligometastatic sarcomas.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Thompson M.D., Ph.D..

Ethics declarations

Conflict of Interest

Scott M. Thompson declares that he has no conflict of interest.

John J. Schmitz declares that he has no conflict of interest.

Grant D. Schmit declares that he has no conflict of interest.

Matthew R. Callstrom has received research support through grants from Galil Medical, Thermedical, and General Electric Medical and has received compensation from Covidien, Medtronic, Perseon, and Endocare for service as a consultant.

Anil Nicholas Kurup has received financial support through a grant from Galil Medical and compensation from UpToDate, Inc., for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sarcoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, S.M., Schmitz, J.J., Schmit, G.D. et al. Image-Guided Thermal Ablative Therapies in the Treatment of Sarcoma. Curr. Treat. Options in Oncol. 18, 25 (2017). https://doi.org/10.1007/s11864-017-0465-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0465-1

Keywords

Navigation